[SCE Tutorial

Paul Rosen, Eric Gurrola, Piyush Agram, Marco Lavalle, Mark Powell

NASA Jet Propulsion Laboratory, California Institute of Technology

November 23, 2015

Contents

4 CONTENTS

[0_Licensel 5
1__Introductionl 7
[2 Getting Started With ISCE] 11
[3 Using MDX| 23
[4 Processing Interferometric Data Sets Using insarApp.py| 35
[5 Processing ERS Datal 69
[6 Processing Envisat Datal 81
[7 Processing COSMO-SkyMed Raw Datal 97
[8 Processing From SLC: COSMO-SkyMed, TerraSAR-X, RadarSAT-2, and oth- |
ersl 113
[9 ISCE Stack Processing for GIAnT)| 127
10 Working wit n 137
(11 Hands On Lab On Polarimetric UAVSAR Data Processing for Land-cover Land- |
[use Change Applications| 159
[12 Post-Processing UAVSAR Stacks With isce App.py| 173

13 GTAnT with UAVSAR Stacks| 193

CHAPTER 0

license

6 CHAPTER 0. LICENSE

Copyright: 2008 to the present, California Institute of Technology. ALL RIGHTS RESERVED.
United States Government Sponsorship acknowledged. Any commercial use must be negotiated
with the Office of Technology Transfer at the California Institute of Technology.

This software and associated documents may be subject to U.S. export control laws. By ac-
cepting this software and associated documents, the user agrees to comply with all applicable U.S.
export laws and regulations. The user has the responsibility to obtain export licenses, or other
export authority as may be required before exporting such information to foreign countries or
providing access to foreign persons.

Installation and use of this software and associated documents is restricted by a license agree-
ment between the licensee and the California Institute of Technology. It is the User’s responsibility
to abide by the terms of the license agreement.

CHAPTER 1

Introduction

8 CHAPTER 1. INTRODUCTION

The following chapters are based on a series of cloud-based tutorials for using the Interferometric
Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) to process InSAR
data from several different international sensors. The cloud-based tutorials were presented to
students at a workshop at UNAVCO in Boulder Colorado in August, 2014 and at a UAVSAR
workshop presented at the USGS in Reston Virginia in October, 2014. Each student was given an
account that they accessed through a web browser on their own laptop computer. The browser
display presented two side-by-side panes to them. On the left pane they read instructions. On the
right pane they were presented with a computer terminal emulation that allowed them to enter
commands at a command line prompt. Visualization of data was done with a remote desktop
application called Guacamole (you will see it referred to in some of the chapters). The browser
interface to the tutorial materials and the integrated interface to the cloud virtual machines was
developed at the Jet Propulsion Laboratory under a NASA contract. Through these interfaces
the students were able to work directly on a pre-configured virtual machine (VM) on the Amazon
cloud. The pre-configured VMs were configured with the required software and each had a data
volume attached containing the sample raw data sets used in the tutorials. At start up, in other
words, the student was ready to begin learning how to use ISCE to process data without having to
install software and download data.

The main purpose of the Earthkit tutorials and this document is to teach the student how to
work with the software package named ISCE (InSAR Scientific Computing Environment) developed
at the NASA Jet Propulsion Laboratory, California Institute of Technology. The ISCE package
provides software basic to processing LevelO or Levell SAR data into interferometric products with
options for filtering, unwrapping, and geocoding. Most of the chapters here are on ISCE. A couple
of the tutorials, however, (Chapters 8 and 12) show how to use interferometric data created by ISCE
as inputs to the Generic InNSAR Toolbox (GIAnT-developed by Piyush Agram at the California
Institute of Technology) for performing geodetic time series analyses. One tutorial (Chapter 10)
describes how to use the PolSARPro package developed at the European Space Agency (ESA) to
use InSAR data (such as UAVSAR polarimetric data) to analyze land surface changes.

Earthkit is not available for general use except during the workshops, but the tutorial material
may be useful to people first learning how to process InSAR data with ISCE; therefore, we are
making the contents of the Earthkit “left pane” (the step by step instructions) available in this
document. What is missing here is the pre-installed software and the data that goes with these
tutorials. In future versions of this document we will add a chapter on installing the software.
For now, there is information in the README.txt file that comes with ISCE on how to install
ISCE and its dependencies. There is also a user forum that may be helpful at the website, http:
//earthdef.caltech.edu/projects/isce_forum/boards.

The student may not be able to obtain the exact data referred to in these tutorials, but that
should not prevent the student from deriving benefit from the material. If a student is interested
in learning how to use ISCE, then they probably already have some data they need to process.
There is a high probability that the data type that the student wants to work with is covered in
these tutorials. If not, then that data type may still be available in the version of ISCE that the
student has (but may have been neglected to be included in the tutorials). If the student can not
find information on working with the data type they have, then they might consider asking about
it at the user forum mentioned in the previous paragraph.

These tutorials present concepts for using ISCE in a progressive way using data types from
different international sensors. Many of the concepts are common to usage of ISCE for data from
any sensor. The specific input files described in a given tutorial, however, are usually specific to
each data from a particular sensor. Therefore, the student new to ISCE and to processing InSAR
data should read through the chapters to get the concepts even if those chapters are discussing

http://earthdef.caltech.edu/projects/isce_forum/boards
http://earthdef.caltech.edu/projects/isce_forum/boards

data from different sensors than the one of interest to the student. If possible the student may
want to obtain data from the sensor being discussed in a particular tutorial. Alternatively, they
should be able to find example ISCE input files for their sensor in the “examples” directory of the
ISCE package, and most of what they read in a given tutorial will still make sense to them while
working with a different sensor and data type. Also, the tutorials refer to specific directory paths
that were created on the cloud instance. The user will have to create their own data paths on their
computer and translate between the paths they read in the tutorial and the paths they create on
their computer.

This initial version of this tutorial document was created by “pasting” in the Earthkit tutorial
pages and adding chapter delimiters between them. The section headings in this version are based
on the original tutorial pages and have not been renumbered in a logical way within each chapter.
Also, there are dead links that were used to jump to other pages within the tutorial on the cloud
version. There are very few of these and with a little patience the context of the words around
the link will help the student to find the page, usually within a few pages in the same chapter.
Future versions of this document will re-typeset this document in a uniform fashion and will fix
these links. We think that it is more useful to put out this document as it is now and fix these
minor idiosyncrasies in a future release.

10

CHAPTER 1.

INTRODUCTION

CHAPTER 2

Getting Started With ISCE

11

1. Introduction to basic ISCE

Welcome to your first session using ISCE. The purpose of this session is to demonstrate the
most straightforward application of ISCE for geodetic imaging, the insarApp.py application.
insarApp takes two raw data files and optionally a digital elevation model (DEM) and produces a
geocoded, and optionally unwrapped, interferogram. insarApp runs automatically from start to
finish with no required interaction. The input files have a number of configurable parameters
that allow the user to control how the processing is done. For this first session, we have
preconfigured all the input parameters in a set of input files.

So let’s get started and simply explore what and where the data files are, then run insarApp.

2. Where are we?

Let’'s see what the files look like on the disk. First let's see where we are. The Unix “pwd”
command tells us the “present working directory” in the file system.

> pwd
/home/ubuntu/

“ubuntu” is your predefined username on this cloud instance virtual machine. (Ubuntu happens
to be the name of a version of the linux operating system that is running on this virtual machine.)
We have chosen a single username for every instance so everyone sees the same interface.

Now let’s take a look at what we’ve got. The unix “Is” command lists files in the present working
directory

> cd data

> 1s

giant labl 1lab4 orbits sites
instruments 1lab3 lost+found raw from roi pac tutorial

This shows that within the present working directory are a number of other directories that
contain the information and descriptive content for each of the ISCE labs. Let’s change our
working directory to lab1 so we can get started with the first lab:

> cd labl
> pwd
/home/ubuntu/data/labl

3. Setting up to run ISCE.

Now let’s see what is in this directory using the “Is -I” command to display more (“-I” = “longer”)
information about the files:

> 1ls -1

drwxrwxr-x 2 ubuntu ubuntu 4096 Apr 18 17:33
drwxrwxr-x 2 ubuntu ubuntu 4096 Apr 18 17:34
drwxrwxr-x 3 ubuntu ubuntu 4096 Oct 17 05:48

Note there are three subdirectories within the lab1 directory: 20061231 contains the raw data for
one radar observation, 20070215 contains the raw data for the other radar observation, and
20070215 20061231 is a directory we have created that will be used to store the output of the
insarApp run. This convention of naming data directories by the date is common in the INSAR
community. You probably know the dates of your acquisitions from when you decided what
data to process. We will describe later how to view the metadata to determine the date of any
data set. We can see what is in these subdirectories while staying at this level by issuing the
following command:

> 1ls 20061231

IMG-HH-ALPSRP049770670-H1.0 A LED-ALPSRP049770670-H1.0 A
> 1ls 20070215

IMG-HH-ALPSRP056480670-H1.0 A LED-ALPSRP056480670-H1.0 A
> 1s 20070215 20061231

insar 20070215 20061231.xml Master.xml Slave.xml

The data set we have provided for this session is a pair of ALOS PALSAR observations
acquired over Los Angeles. We have named the directories containing these data by using the
date of acquisition, but the user is free to name these directories arbitrarily (within unix
requirements). In this example, we have provided an appropriate DEM that will be applied in
the processing. In a later step, we will show how to tell ISCE to find an appropriate DEM, and
configure parameters.

To run insarApp, we need to set the present working directory to the directory where we want
the output to be. In addition, the input configuration XML files must be in this same working
directory. From above, we see that the xml file is in 20070215 20061231, so let’'s change to
that directory:

> pwd

> cd 20070215 20061231

> pwd
/home/ubuntu/data/1labl/20070215 20061231

> 1s
insar 20070215 20061231.xml Master.xml Slave.xml

We will come back later to examine the contents of the xml file, but let’s jump in the deep end
and process some data from start to finish.

4. Running ISCE and examining the output

Now that we are at the appropriate working directory to run the application, to process the data
we simply issue the following command:

> insarApp.py insar 20070215 20061231.xml
At this point, the screen should fill with scrolling text describing where you are in the processing.
For the scenes provided, the total processing time should take roughly 20 minutes. Go get

some coffee and come back then.

Now that insarApp has finished, we can examine the output, and try to make sense of some of
the ancillary data that ISCE computes. First, let's see what we’ve got:

> 1s

20061231.raw iz

20061231.raw.aux lat

20061231 .raw.xml lon

20061231.slc Master.xml
20061231.slc.xml rangeOffset.mht
20070215.raw rangeOffset.mht.xml
20070215.raw.aux resamplmage.amp
20070215.raw.xml resamplmage.amp.xml
20070215.slc resamplmage.int
20070215.slc.xml resampImage.int.xml
azimuthOffset.mht resampOnlyImage.amp
azimuthOffset.mht.xml resampOnlyImage.int
catalog resampOnlyImage.int.xml
dem.crop rgdem

demLat N33 N35 Lon W119 Wll6.dem Slave.xml

demLat N33 N35 Lon W119 Wl1l6.dem.wgs84 topophase.cor
demLat N33 N35 Lon W119 Wll6.dem.wgs84.xml topophase.cor.xml
demLat N33 N35 Lon W119 W1l6.dem.xml topophase.flat

filt topophase.cor topophase.flat.xml
filt topophase.flat topophase.geo

filt topophase.flat.xml topophase.geo.xml
filt topophase.unw topophase.mph

insar 20070215 20061231.xml topophase.mph.xml
insar.log z

insarProc.xml zsch

isce.log

In later labs we will examine the most important files in this directory in detail, but for now, let’s
do the most gratifying thing and just look at the final output, which is called

“filt_topophase.flat.geo.” To display INSAR data, we have developed a tool called mdx that is
especially well tailored to examining large files with complex number data types such as

interferograms. We have an application that looks at the metadata associated with a data file
and calling mdx appropriately.

> mdx.py filt topophase.flat.geo

We now have on our screen a new window displaying a portion of the image file.
. %, topophase.geo

fpplication Display Set Zoom Select Print Tools Helpl

T ¥

The data file filt_topophase.flat.geo contains a wrapped interferogram that has been
flattened and geocoded using a dem (digital elevation model) that was downloaded by ISCE
early in the processing. Each pixel in the image is a complex number with an amplitude and
phase associated with it. The displayed image has a color mapping that blends the amplitude of
the image with the phase which aids the viewer in interpreting the phase values in the context of
the local area (e.g. water is always decorrelated in differential INSAR images, so the phase will
be random. observing a water body in the amplitude data will assure the viewer that all is well.)

5. Basic MDX controls

The user can toggle the display to see only amplitude by clicking on the “C8-mag” button. To
see only phase, click on “C8-pha”. To go back to seeing both, center click again on “C8-mag”.

800 \| topophase.geo X topophase.geo

Wpplication Display Set Zoon Select Print Tools HElPl fpplication Display Set Zoon Select Print Tools Helpl

mdx has a rich set of display features that can be explored at leisure. We should look at one of
the most important features though, which is “zoom”. We see that the image as displayed is
only a portion of the full image, displayed at a 1:1 zoom scale. We can scroll around the image
by clicking the scroll bars, but to get the big picture, we can select the zoom menu item to zoom
out.

The zoom menu presents us with several options. “None” means revert to 1:1 scaling. “+2”
means zoom in by a factor of 2. “-2” means zoom out by a factor of 2. “Other” allows us to set
the zoom factor as we like. In the images below, we selected a factor of -8 which shows us the
entire file. Due to the aspect ratio of the window, extra area is displayed as gray. We can
resize the windows to make better use of the screen space.

Zoom,

-

| topaphase.geo

lect Print Tools

Help

-

\| topophase.geo

Application Display Set Zoom | Select FPrint Taols

None

200H: B

s

This concludes your first successful ISCE run!

1. Number formats in ISCE data files

ISCE files are almost universally either binary “flat files” containing image data or large arrays of
processing relevant information, or ASCII text files containing logging, metadata, and other
ancillary information. A “flat file” is just an unformatted sequence of binary numbers that can
represent one-, two-, or n-dimensional arrays of data. The binary numbers themselves can be
single bytes integers, two-byte integers, four-byte integers, or four-byte floating point numbers,
depending on the data file and its application.

To further complicate matters, the numbers can be complex, that is with a real and imaginary
part. Radars are coherent instruments, essentially operating at a single radio sinusoidal
frequency. As such, the instrument can keep track of the magnitude and the phase of the
sinusoidal signal in the received data. It is this phase information that allows us to perform
interferometry - interfering the phase of one image against another. (For those rusty on complex
numbers: the magnitude of a complex number is calculated from (R*R+I*I)'/? and the phase
from TAN™ (I/R)).

Complex numbers are typically represented in a file as “sample-interleaved” data. For example,
for a 3 x 3 image, if R represents the real part of a sample, and I represents the imaginary part
of a sample, then the image file would look like:

Row 1: RIRIRI
Row 2: RIRIRI
Row 3: RIRIRI

and represented as just a sequential unformatted list of numbers it would look like:
RIRIRIRIRIRIRIRIRI

Note that R and | represent different values at each sample position. Note also that the number
format for the samples can be a range of possibilities. In ISCE, generally, R and T are 4-byte
float numbers, such that the complex sample is an 8-byte complex quantity. But there is no
reason that complex numbers could not be for instance represented as having a 2-byte real and
2-byte imaginary part.

Another aspect of these flat files is that they may contain more than one layer of data. For
example typically, ISCE binds a radar image and a derived interferometric image into one file to
make it convenient to match an easily recognizable geographic feature with an interferometric
quantity. These files are typically line-interleaved. A 3 x 3 line interleaved example would be:

Row 1: AAA
Row 2 ppPP

Row 3: AAA
Row 4 ppp
Row 5: AAA
Row 6: PPP

where again A and P represent different values at each sample. This can also be thought of as
a double width file of three rows.

Row 1: AAAPPP
Row 2: AAAPPP
Row 3: AAAPPP

ISCE does have some file naming conventions that would aid a user in knowing what format is
specified, but it is best not to rely on that. The_Output File Formats discussion in the Datasets
tutorial has a complete description of the naming conventions used in ISCE for flat files.

Clearly, without a metadata file describing the dimensionality and other attributes of the data file,
a user would need separate documentation to interpret it. ISCE metadata files carry all the
necessary attributes of the data.

22

CHAPTER 2. GETTING STARTED WITH ISCE

CHAPTER 3

Using MDX

23

1. MDX interferogram visualization

In a previous lab we saw a preliminary use of the display tool mdx. In this segment, we will
explore the features of mdx in greater detail to highlight its utility.

mdx stands for “multi-dataset display using X11” and was written as a special purpose display
tool to visualize multiple large data sets associated with radar data processing. mdx takes into
account the fact that the data sets are typically very large, often multiple gigabytes, and
therefore impractical to read into memory all at once. Therefore, in its design, it keeps track of
the coordinates of the display that the user controls with the GUI motif-based user interface, and
only reads, scales, maps to color, and displays those data within the window. When the user
scrolls the window to another location, mdx keeps track of what is old and what is new in the
new position and recalculates and redisplays only the new data. In this way it can be very fast
to explore very large data sets. On zooming out, mdx subsamples the data file, so even
zooming out over large areas allows for relatively fast panning. This feature, which one would
expect to find in many visualization tools, is unique to mdx, and makes it a very powerful tool for
working with ISCE data.

2. Command line options

mdx has a large array of command-line arguments to control the data sets that are displayed
and how they are displayed. Typing “mdx” at the command prompt with no command
arguments returns a help message with a usage message and all the possible options. We will
describe the most often used of these options later, but first we will describe a python script
called “mdx.py” that allows users quick and easy use of mdx for commonly displayed data types.
Typing “mdx.py” at the command prompt with no command arguments returns a help message
describing its usage in full.

> mdx.py
Usage:
mdx.py filename [-wrap wrap] ... [-z zoom -kml output.kml]
where
mdx.py : displays one or more data files simultaneously by

specifying their names as input. The maximum number,

of images that can be displayed depends on the machine
architecture and mdx limits. If displayed (no -kml flag)
the images don't need to have the same extension, but need
to have same width.

filename: input file containing the image metadata.
Metadata files must be of format filename. {xml,rsc}
and must be present in the same directory as filename.
Different formats (xml,rsc) can be mixed.

-wrap : sets display scaling to wrap mode with a modules of Pi.
It must follow the filename to which the wrap is applied.

the command can be repeated for different images.

-z : zoom factor (+ or -) to apply to all layers. It's optional
and can appear anywhere in the command sequence and must

appear only once.

-kml : only for geocoded images it creates a kml file with all the
input images overlaid. Each layer can be turn on or off in
Google Earth. It's optional and can appear anywhere in the
command sequence and must appear only once. The images don't
need to be co-registered.

Examples:
mdx.py 01 02.int # Standard way to run mdx.py
mdx.py 03 04.int 05 06.int -z -8 # Display two images; zoom out by 8

mdx.py 03 04.geo -z 8 05 06.geo -kml fileout.kml # Create a kml file named
fileout.kml with two
layers, one per image. Both
images are zoomed in
by a factor of 8
mdx.py 03 04.int 05 06.int -wrap 6.28 # Display two images. Wrap the
second modulo 2Pi

mdx.py -ext

to see the supported image extensions.

3. MDX and file names

The common form of a data filename in ISCE is prefix.ext where ext is one of a number of
standard extensions that describe a particular format or type of data. See Output File Formats
discussion in the Datasets tutorial for a complete description of the extensions used in ISCE.
Typing “mdx.py -ext” at the command prompt with no other command arguments displays a list
of all the extensions that mdx.py understands, including a few heritage extensions not used by
ISCE.

> mdx.py —-ext
version = 1.0.0
Supported extensions:
unw

byt

flg

scor

slc

int

geo

flat

mph

cpx

msk

cor

hgt

hgt holes
rect

amp

dem

dte

dtm

mdx.py takes as arguments a list of filenames, one for each of the images you want to display.
Since all ISCE data files are flat files, ie. binary files of data arranged in rows and columns with
no headers or other descriptive information, their corresponding xml metadata file is needed to
describe the image dimensions. The metadata filename is formed in ISCE by adding “.xml” to
the end of the filename. The format of the data is also encoded in the metadata. mdx.py
constructs a metadata filename from the data filename provided on the command line, then
reads all the descriptive information from the metadata file to determine how to display the data.

4. Layers of data

Let’s look at a few examples. The output of ISCE after running the insarApp.py application
contains a pair of complex images that form the interferogram, typically known as the “master”
and “slave,” though the name of the file can be arbitrary. In what follows, the master and slave
filenames are denoted by the dates of acquisition. You might want to compare these images to
see how well they align after motion compensation and image formation.

> cd /home/ubuntu/data/sites/lab3 alos/20070612 20090802

This site is known as the Afar region in Africa. A599 refers to the Ascending track number and
0230 refers to the frame number. The dates 20070612 and 20090802 are the dates on which
acquisitions of this area were made, and we choose to create a directory called

20070612 20090802 as the location to process the data. The input data files are contained
in directories 20070612 and 20090802 individually. Let’s display one of the processed
images: the “single look complex” sic files.

> mdx.py 20070612.slc

will display this file as 2 layers, each layer with a clickable button to select it.

8 00 % 20070612.slc

Application Display Set Zoom Select Print Tools Help

=

s | =]

Note the name associated with these buttons. An s1c is a complex data type, and the natural
way to display each complex pixel is through its magnitude and phase. So for this slc, mdx.py
will construct a layer that is the magnitude (C8-Mag) and another layer that is the phase
(c8-pPha). The C8 designation means that the slc file is stored as a complex 8-byte data type
(4-byte real, 4-byte imaginary; mdx understands complex integers as well). For more on
complex numbers and data formats, see this document on Number Formats.

Since we specified one slc file as input to mdx.py, there are 2 layers, C8-Mag, C8-Pha. By
clicking on either layer, it will select just that layer. Click back and forth on the C8-amp and
C8-Pha layers to see that while there is structure in the amp layer associated with the ground
reflectivity, the phase layer is completely random. This is because the radar is a coherent
system and the phase is representative of the “speckle” pattern created by random collections
of scatterers in a resolution element. The phase is a completely random process. The
amplitude is also subject to speckle, which is why it is so noisy, but the intrinsic reflectivity of the
surface shows through.

Click on the C8-Pha layer and scroll around using the scroll bars. Try to match the scroll
locations as shown below. The phase should still look random!

800 . : 1\l 20070612:slc

fipplication Display GSet Zoom Select Print Tools Help

It is hard to imagine looking at this random phase that there is information present in the data.
But because the randomness has to do with the spatial variability of the scattering on the
ground, if another acquisition is made at a different time from nearly the same vantage point,
then the randomness will be essentially the same, so in the difference, i.e. in the interferogram,
this randomness cancels and a beautiful interference pattern emerges. Let's examine the
various interferograms that ISCE insarApp.py produces.

> mdx.py resampImage.int topophase.flat filt topophase.flat

will show the original interferogram, one flattened to remove topography, and another filtered to
smooth out the noise. These are also complex data types, so there will be 6 layers - 3 pairs of
C8-Mag, C8-Pha layers. Note that the display comes up looking very dark. This is because this
corner of the images is indeed low reflectivity water. Also each of the three amplitude layers is
multiplied together to merge them for display, so they become even darker.

eno X int, t hase.flat, te hase.flat, filt_topophase.flat, filt_top 8 00 X t, to hase flat, t¢ hase.flat, filt_tc hase.flat, filt_top.

fpplication Display Set Zoomw Select Print Tools Helpl fpplication Display Set Zoon Select Print Tools Help

F— =

If you click individually on any one amp layer, you will see they are brighter, and if you scroll
around to different areas, you’ll see much brighter surface features in the image, as shown in
the side-by-side comparison above.

Now click on the three C8-Pha layers to see how they change with different stages of

processing. Note that the random phase of the slc file has yielded to a phase difference pattern
than is quite well behaved and non-random, through the magic of interferometry.

foplication Display et Zoon Select Print_Teols s olication Display Set Zoom Select Print Toals welp

: - e R e N

resamplmage.int - basic topophase.flat - filt topophase.flat -
interferogram interferogram with filtered version to
topography removed smooth out the noise

Note that if you would like to go back to an overlay of data, for example overlaying the amp and
pha layers of a particular image, you must click on one layer then “middle click” (for a 3-button
mouse) on the other layer. (“middle” click on a 1-button mouse depends on your system; for a
mac, often setting the X11 preference to “emulate three button mouse” and holding down the
“Option key” while clicking will emulate a middle-click.)

You can also mix data types. You can examine the interferograms and the correlation file to
compare the phase noise to the correlation.

> mdx.py -z -8 topophase.flat topophase.cor

-wrap

. topophase.ta, topophase cor, opophase.cor
Frim_Tols

merged layers of above
command for
topophase.flat and
topophase.cor

amplitude layer only of
topophase.flat

phase layer only of
topophase.flat

correlation layer only of
topophase.cor, with a
color cycle wrap of O -
1.2

In this case, mdx.py displays the C8-Mag and C8-Pha layers of the topophase.flat followed by
the RMG-Mag displaying again the magnitude kept in the correlation file layer and RMG-Hgt
displaying the correlation layer. An RMG file is a ROI_PAC legacy line-interleaved format file still
used in ISCE. Click back and forth on the magnitude layers. They should be completely
coregistered. Then click back and forth on the phase and correlation layers. Note the
correlation is high when the phase is smoother. The figure above illustrates the various layers.
Note also in this example that we specified a zoom factor of 1/8 (“zoom out”) on the command

line “-z
windows.

-8". As shown in the first tutorial, zooming can also be accomplished with the mdx

5. Bonus features

A couple of other features of mdx and mdx.py that you should know about:
1) by clicking on any pixel in the image, the values of all layers at that pixel will be displayed at
the top of the display window, above the image but below the menu bars.
2) the menu bars allow the user to interactively control a number of features, including the zoom
factor

8 006 % topophase.flat, topophase.cor, topophase.cor

Application Display Set Zoom Select Print Tools

Z00M; -8x COL: 1640 ROM; 363 B1028,22 2,4142743 297,17087 0,.9037418

mdx.py is a convenient way to quickly display files that are produced by ISCE. But the mdx
program itself has a considerable amount of command-line flexibility that mdx.py does not try to
capture. You can see a glimpse of the syntax expected by mdx by observing the command line
for mdx that mdx.py constructs:

> mdx.py topophase.flat
Running: mdx topophase.flat -c8 -s 5194

By playing with mdx.py and observing the constructed mdx commands, and by reading the
usage message for mdx (two pages!), you can get a feel for how to display files with many
different characteristics simultaneously and efficiently using the mdx executable command (as
opposed to the mdx.py script) directly. But mdx.py should satisfy the needs of most users.

34

CHAPTER 3. USING MDX

CHAPTER 4

Processing Interferometric Data Sets Using
insarApp.py

35

Understanding what data sets are possible to use with ISCE

ISCE is a package designed to work with data from most of the available international SAR
sensors operating in a standard “stripmap” mode. In stripmap imaging, the sensor generates a
regular stream of radar pulses and the pointing of the radar beam is fixed to be roughly
broadside to the direction of flight of the spacecraft. In this way a continuous swath is acquired
for as long as the radar sensor is on. The ISCE package understands the formats of the
following sensors:

Satellite Years of Repeat | Wavelength Stripmap Product level
Operation cycle (band/cm) Modes that can be
(days) ingested into
ISCE

European 1992-2001(-2011) 35 c/6 1 strip map LO
ERS-1/ERS-2 (1,3,183)
European 2003-Sep.2010, Oct. 35 (30) Cc/6 7 standard LO
Envisat 2010-Apr. 2012 modes,

including

dual-pol
Japanese Jan. 2006-Apr. 2011 46 L/24 Single, dualand | |0 (called L1.0)
ALOS quad-pol modes
German 2007 - present 11 X/3 Variable L1 only
TerraSAR-X resolution and
TanDEM-X 2010 - present beam pointing
Italian COSMO- | 2007 - present 16 X/3 Variable LO
SkyMed (1,4,7,8) resolution and L1
4 Satellites beam pointing
Canadian 2007 - present 24 Cc/6 Variable L1 only
Radarsat-2 resolution and

beam pointing

Other sensors, including Japan’s JERS-1, and Canada’s Radarsat-1, have orbit control and
knowledge factors that ISCE cannot currently handle for interferometry, so these are not fully
supported. In the future, we will be adding them to the available data sets. ISCE understands
the individual formats of the Level O or Level 1 data and converts them to a standard internal
format that is uniform across sensors within ISCE. In this way, the stripmap and interferometric
processing can proceed identically for all sensors.

Level 0 (LO; for ALOS, called Level 1.0) data are raw radar pulses that have not yet been
processed to imagery but have been conditioned to remove downlink telemetry and fix data
transmission errors such as timing glitches and data dropouts. Level 1 (L1; for ALOS, called
Level 1.1) data are processed to form complex radar images, often called “single-look complex’
images (SLC images). A complex image is a two-dimensional pixel array of complex numbers
(real and imaginary parts) which represent the backscattered amplitude and phase of each
pixel.

Other modes that many of these sensors potentially can deliver are spotlight mode and
ScanSAR mode, the former for focused areas at fine resolution, the latter for broad areas at
coarse resolution. Since interferometry is more challenging in both these modes, and data
availability is limited, ISCE does not support processing raw data from these modes currently.
Spotlight data already processed to Level 1 (SLC) images, including COSMO-SkyMed and
TerraSAR-X, can be processed in ISCE if it was acquired with interferometric compatibility.

This lab contains modules 3.1, 3.2, 3.3, etc., starting with a processing example from ALOS
PALSAR in module 3.1, and then some discussions about the ISCE outputs. Later labs 4-7
cover other sensors. To a large extent, these modules are independent, so students can run
only those sensor modules in which they have interest.

1.Understanding ALOS PALSAR Data Set Names

We’'ll start with a popular data type: The PALSAR L-band data from Japan’s ALOS satellite,
which operated between 2006 and 2011. We will describe the names these files are given by
the data provider, and how these can be placed in the ISCE input files for processing.

Were you to download PALSAR data from a data provider, each frame comprises an image
data file and a image leader file, as well as possibly some other ancillary files that are not used
by ISCE. The leader file contains parameters of the sensor that are relevant to the imaging
mode, all the information necessary to process the data. The data file contains the raw data
samples if Level 1.0 raw data (this is just a different name from what other satellites call Level 0)
and processed imagery if Level 1.1 or 1.5 image data. The naming convention for these files is
standardized across data archives, and has the following taxonomy:

IMG-HH-ALPSRP056480670-H1.0-A

Ry

o?acrizaartison 5 chars 4 chars _ 1.x A - Asc. pass
P Orbit number Frame number X =Prod.level D -Desc. pass

SN

LED-ALPSRP056480670-H1.0-A

Files with IMG as prefix are images. Files with LED as prefix are leaders. We will describe how
to find and download these data shortly. But first let’'s see how these filenames are specified in
the inputs to ISCE. ISCE at present only supports processing the raw or Level 1.0 PALSAR
data.

2. Inserting ALOS PALSAR filenames into the ISCE xml input files

Now it is time to take a look at the input file that we used in lab1 when we ran insarApp.py.
First you should change your working directory to the lab1 directory. Recall from lab1 that you
use the command pwd to see the location of the directory you are currently in and you use the
command cd to change directories. For your current directory you should see,

> pwd
/home/ubuntu

Now cd into the lab1 processing directory where you ran the ISCE application insarApp.py.
> cd data/labl/20070215 20061231

You can use the 1s command discussed in lab1 to see the files in this directory. For now we
will be concerned only with the three files, insar 20070215 20061231.xml, Master.xml,
and Slave.xml.

> 1s -1 insar 20070215 20061231.xml Master.xml Slave.xml
insar 20070215 20061231.xml

Master.xml

Slave.xml

Use the Unix command cat (for catenate), to see the contents of the input file:

> cat insar 20070215 20061231.xml
<insarApp>
<component name="insarApp">
<property name="sensor name">
<value>ALOS</value>
</property>
<component name="Master">
<catalog>Master.xml</catalog>
</component>
<component name="Slave">
<catalog>Slave.xml</catalog>
</component>
</component>
</insarApp>

This is an xml file. The format of this type of file may seem unfamiliar or strange to you, but

with the following description of the basics of the format, it will hopefully become more familiar.
The first thing to point out is that the indentations and line breaks seen above are not required
and are simply used to make the structure more clear and the file more readable to humans.
The xml file provides structure to data for consumption by a computer. As far as the computer is
concerned the data structure is equally readable if all of the information were contained on a
single very long line, but human readers would have a hard time reading it in that format.

The next thing to point out is the method by which the data are structured through the use of
tags and attributes. An item enclosed in the < (less-than) and > (greater-than) symbols is
referred to as a tag. The name enclosed in the < and > symbols is the name of the tag. Every
tag in an xml file must have an associated closing tag that contains the same name but starts
with the symbol </ and ends with the symbol >. This is the basic unit of structure given to the
data. Data are enclosed inside of opening and closing tags that have names identifying the
enclosed data. This structure is nested to any order of nesting necessary to represent the data.
The Python language (in which the ISCE user interface is written) provides powerful tools to
parse the xml structure into a data structure object and to very easily “walk” through the
structure of that object.

In the above xml file the first and last tags in the file are a tag pair: <insarApp> and
</insarApp> (note again, tags must come in pairs like this). The first of these two tags, or
the opening tag, marks the beginning of the contents of the tag and the second of these two
tags, or the closing tag, marks the end of the contents of the tag. ISCE expects a “file tag” of
this nature to bracket all inputs contained in the file. The actual name of the file tag, as far as
ISCE is concerned, is user selectable. In this example it is used, as a convenience to the user,
to document the ISCE application, named insarApp.py, for which it is meant to provide
inputs; it could have been named <foo> and insarApp.py would have been equally happy
provided that the closing tag were </ foo>.

The next tag is <component name="insarApp">. Its closing tag </component> is
located at the penultimate line of the file (one line above the </insarApp> tag). The name of
this tag is component and it has an attribute called name with value “insarapp”. The
component tags bound a collection of information that is used by a computational element within
ISCE that has the name specified by the name attribute. The name “insarApp” in the first
component tag tells ISCE that the enclosed information correspond to a functional component
in ISCE named “insarApp”, which in this case is actually the application that is run at the
command line.

In general, component tags contain information in the form of other component tags or
property tags, all of which can be nested to any required level. In this example the
insarApp component contains a property tag and two other component tags.

The first tag we see in the insarApp component tag is the property tag with attribute

name=“sensor name”. The property tag contains a value tag that contains the name

of the sensor, ALOS in this case. The next tag is a component tag with attribute
name="Master”. This tag contains a catalog tag containing Master.xml. The
catalog tag in general informs ISCE to look in the named file (Master.xml in this case) for
the contents of the current tag. The next component tag has the same structure with the
catalog tag containing a different file named Slave.xml.

The contents of the Master.xml and Slave.xml files are the following:

> cat Master.xml
<component name="Master">
<property name="IMAGEFILE">
<value>../20070215/IMG-HH-ALPSRP056480670-H1.0 A</value>
</property>
<property name="LEADERFILE">
<value>../20070215/LED-ALPSRP056480670-H1.0 A</value>
</property>
<property name="OUTPUT">
<value>20070215.raw</value>
</property>
</component>

> cat Slave.xml
<component name="Slave">
<property name="IMAGEFILE">
<value>../20061231/IMG-HH-ALPSRP049770670-H1.0 A</value>
</property>
<property name="LEADERFILE">
<value>../20061231/LED-ALPSRP049770670-H1.0 A</value>
</property>
<property name="OUTPUT">
<value>20061231.raw</value>
</property>
</component>

The component tag that contains the information in each of these files (named “Master” and
“Slave”) can be found also in the file insar 20070215 20061231 .xml surrounding the
<catalog> entries that specify these filenames. The Master.xml and Slave.xmnl files each
contain three property tags that give the names of the IMAGEFILE, LEADERFILE, and the
ouTPUT file. The ALOS PALSAR data are delivered with the IMAGEFILE and LEADERFILE
plus a few other files that are not used by ISCE. You may choose any name you like for the
OUTPUT filename. The oUTPUT filename is the name of the raw file that ISCE creates in its
initial steps of processing. In the above example, we have chosen a ROI_PAC style convention
of using the date in the format yyyymmdd (year month day). The base of the name you give

(the part of the name before the . raw) is also used in the name of the single-look complex files
(sLcs) created by ISCE.

The <value> tag for the properties IMAGEFILE and LEADERFILE in Master.xml and
Slave.xml contain the symbol / (commonly referred to as slash) in its name, which indicates
that these are paths in the file system. The <value> tag for the output file does not contain any
/ symbols, which indicates that the file will be located in the directory from where the
processing command is issued, which was the /home /ubuntu/1abl1/20070215 20061231
directory in lab1. The paths used in these example files begin with the symbol ../ which
indicates that they are relative paths from where we are to where the files are located. The
other type of path is an absolute path and would start with the / symbol without the leading
two dots as in the result of the pwd command (see above for example).

To understand how to interpret the relative path consider, for instance, the IMAGEFILE given
in the Master.xml file where we find the value,

../20070215/IMG-HH-ALPSRP056480670-H1.0 A

The . ./ part of this name indicates to look one directory above the current directory. Then the
20070215 part indicates to look in the directory 20070215 found relative to there (i.e., the
directory 20070215 located in the directory one directory above the current directory).

Finally, the IMG-HH-ALPSRP056480670-H1.0 A part names the IMAGEFILE located in
that directory. To further help you understand relative paths, try the following commands:

> pwd
/home/ubuntu/data/labl1/20070215 20061231
> cd ../

> pwd

/home/ubuntu/data/labl/

> 1s

20061231 20070215 20070215 20061231 DEM

> cd 20070215

> pwd

/home/ubuntu/data/labl/20070215

> 1s

TMG-HH-ALPSRP056480670-H1.0 A LED-ALPSRP056480670-H1.0 A

As you follow these steps you are following the relative path given in the Master.xml file
and you see that the IMAGEFILE and LEADERFILE found in that directory are those given in
the Master.xml file.

Now use the cd command (in one step) to go back to the processing directory and use the
1s command to view the contents of the 20070215 directory without moving to that directory,

> cd ../20070215 20061231

> pwd

/home/ubuntu/data/labl/20070215 20061231

> 1ls Master.xml

Master.xml

> 1s ../20070215

IMG-HH-ALPSRP056480670-H1.0 A LED-ALPSRP056480670-H1.0 A

You can see that the result of this last 1s command issued from the directory
20070215 20061231 (where Master.xml is located) is the same as above where we used
the cd command to change directories to the . . /20070215 directory.

Note, in this example the relative paths involved a single . . / symbol in naming the relative
path. A relative path in general may contain any number of . . / symbols and directory names
necessary to locate the directory tree where the files are. Each . ./ indicates to look one
directory above the directory pointed to by any previous chain of . . / symbols. For example,

../../dirl/filel

points to a file named £ilel located in a directory named dir1 located two directories above
the current directory. We say a directory dir1 is above directory dir2 ifdirl contains
dir2,i.e., ifthe 1s command used in dirl shows dir?2 inits listing of files and directories.
Another example indicating a relative path going up and down the directory trees relative to the
current directory: the relative path,

./../../../dirl/dir2/filel

indicates that filel is found by going up 4 directories from the current directory and then
down from there into dirl andthen dir2.

An alternative to using the relative path would be to use the absolute path, which is the path
shown by the pwd command above when we changed directories to the 20070215 directory
where the IMAGEFILE and LEADERFILE were found. Using the absolute path, the
IMAGEFILE tag would look as follows:

<property name="IMAGEFILE">
<value>

/home/ubuntu/data/1labl/20070215/IMG-HH-ALPSRP056480670-H1.0 A
</value>
</property>

Remember that the line breaks and indentations in the xml file are not interpreted by the
computer and are only used to improve readability for humans. The absolute path method for
the LEADERFILE would look similar in an obvious way except with the name of the leader file
after the final / in the path. You are free to choose whether to use absolute paths or relative
paths or a combination of both (for whatever reason).

The choice between the use of absolute and relative paths could involve more than a
question of style. If you are doing a very small project, such as in this tutorial, then it matters
little which you choose. If there ends up being a long chain of . ./ symbols to point to the input
files, then an absolute path may be more readable. If you are working on a large project
involving many processing runs and a complex directory structure, then the use of absolute
paths could result in a waste of time and money when the project directory tree is moved within
the file system or to another computer and the absolute paths in the input files have to be
modified. The benefit of using relative paths is that if an entire project data directory tree were
moved from one location to another on the same file system or to another computer, while
preserving the internal structure of the data directory tree, then all of the input files that use
relative paths that point to paths in the project data directory tree will continue to work without
modification. Any input files with absolute paths will have to be modified, which could be a very
costly and laborious process.

The ISCE input data in the above example were split between three different files,
insarApp.xml, Master.xml, and Slave.xml. An alternative is to use a single file
containing all of the needed information as in the following:

<insarApp>
<component name="insarApp">
<property name="sensor name">
<value>ALOS</value>
</property>
<component name="Master">
<property name="IMAGEFILE">
<value>../20070215/IMG-HH-ALPSRP056480670-H1.0 A</value>
</property>
<property name="LEADERFILE">
<value>../20070215/LED-ALPSRP056480670-H1.0 A</value>
</property>
<property name="OUTPUT">
<value>20070215.raw</value>
</property>
</component>
<component name="Slave">
<property name="IMAGEFILE">
<value>../20061231/IMG-HH-ALPSRP049770670-H1.0 A</value>

</property>
<property name="LEADERFILE">
<value>../20061231/LED-ALPSRP049770670-H1.0 A</value>
</property>
<property name="OUTPUT">
<value>20061231.raw</value>
</property>
</component>
</component>
</insarApp>

A final point on relative paths: They are interpreted relative to the current working directory.
Thus if you are working in directory A, but you have an xml file in directory B below A that
references . ./file.dat, this will resolve to a path a level above A, not at level A.

There are many more possible input options for commanding the processing that we will
reveal as we go along in these tutorials. In the next step of this tutorial you will pick one of
these styles for input files and try processing some ALOS data using ISCE. The details of the
different input files for the other types of sensors supported by ISCE can be found at the
following links.

3. Processing ALOS PALSAR data with ISCE

It is time to test your understanding of the input files needed to run insarApp.py by creating
your own input files for a new pair of ALOS PALSAR images. In this exercise, you will create the
necessary input files based on the examples provided in Step 2. To create these files you will
need to be able to use a text editor on the virtual machine. Many of you are familiar with text
editors like “vi” or “emacs” and you are welcome to use them. For those unfamiliar with text
editors, the virtual machine instance provides a simple tool call “nano” that has a few basic
“control commands” to open and close files, cut and paste text, etc. It is mostly self-explanatory,
but you can look at this tutorial for more information. So let’s get started. First we need to
position ourselves in the directory where these new data reside:

> cd
> cd data/lab3

The first cd command simply sends you back to your home directory. The second positions you
at the level where the data for this lab resides. Let's see what'’s in this directory:

> 1s
alos

For the moment, we are interested in ALOS PALSAR, so we will position ourselves there:

> cd alos
> 1s
20070612 20090802

These names are directories containing the ALOS data for two dates, one in 2007 and the other
in 2009. We can examine the contents:

> 1s 20070612

IMG-HH-ALPSRP073630230-H1.0 A LED-ALPSRP073630230-H1.0 A
IMG-HV-ALPSRP073630230-H1.0 A

> 1s 20090802

IMG-HH-ALPSRP187700230-H1.0 A LED-ALPSRP187700230-H1.0 A
IMG-HV-ALPSRP187700230-H1.0 A

Now it is time to create the input files as above. To organize your data, let's create a new
directory where all the results will go:

> mkdir 20070612 20090802
> cd 20070612 20090802

At this point, you must create the input files. As described above you have a choice to create
one input file that contains all information or to spread the information across three files. If you
choose to create it all in one input file, start by creating an empty file:

> touch insar allinput.xml

The touch command simply creates an empty file if that file does not already exist. If it does
exist, it simply updates the modification date. If you choose to create three files, start by
creating three empty files:

> touch insar input.xml
> touch 20070612.xml
> touch 20090802.xml

Whichever style you choose, with the information provided in Step 2 above and armed with your
favorite text editor, you should be able to construct your input files with the appropriate
information.

Go for it! When you think your input files are ready, you have can either “play it safe” or “play it
risky”. If you want to play it safe, look at these examples to see what these files should look
like. If you want to play it risky, just run the processor script!

> insarApp.py insar allinput.xml

or

> insarApp.py insar input.xml

Go get another cup of coffee, and come back in about 20 minutes while the processing occurs.
If the program terminates unexpectedly because of an input error, compare your files to the

examples.

4. Your completed run

After insarApp.py completes, you should see a text message on your screen similar to the
following:

runGeocode - Outputs

runGeocode.outputs .MINIMUM GEO LONGITUDE = 40.3883333333
runGeocode.outputs.MAXIMUM GEO LATITUDE = 11.0975
runGeocode.outputs.MAXIMUM GEO LONGITUDE = 41.2466666667
runGeocode.outputs.GEO LENGTH = 2048
runGeocode.outputs.LONGITUDE SPACING = 0.000833333333333
runGeocode.outputs.LATITUDE SPACING = -0.000833333333333
runGeocode.outputs.MINIMUM GEO LATITUDE = 12.8033333333
runGeocode.outputs.GEO WIDTH = 1031
igaassasdsadsasdiaasdiaasiasdiaaaiaaaiaad iR iaas R taRR R R Rl
FRAA AR RAAFRAAF AR FFSAA

2013-07-10 00:50:24,564 - isce.insar - INFO - Total Time: 709 seconds

Note for your run, the date and times will be different, and the Total Time may be longer or
shorter than 709 seconds, depending on the kind of virtual machine you are running.

Congratulations you have successfully run ISCE for an ALOS data set. You can view the list of
output files that were generated by insarApp.py using the Is command. You should see the
following list of files:

> 1s

20070612 .xml insar.log
20090802 .xml insarProc.xml
azimuthOffset.mht isce.log
azimuthOffset.mht.xml lat.rdr

catalog lon.rdr
dem.crop rangeOffset.mht
demLat N11 N14 Lon E040 EO42.dem rangeOffset.mht.xml
demLat N11 N14 Lon E040 EO42.dem.wgs84 resampImage.amp

demLat N11 N14 Lon E040 EO42.dem.wgs84.xml resamplmage.amp.xml
demLat N11 N14 Lon E040 E042.dem.xml resampImage.int

filt topophase.flat
resampImage.int.xml
filt topophase.flat.geo
resampOnlyImage.amp

filt topophase.flat.geo.xml

resampOnlyImage.int
filt topophase.flat.xml
resampOnlyImage.int.xml

IMG-HH-ALPSRP073630230-H1.
IMG-HH-ALPSRP073630230-H1.
IMG-HH-ALPSRP073630230-H1.
IMG-HH-ALPSRP073630230-H1.
IMG-HH-ALPSRP073630230-H1.
IMG-HH-ALPSRP187700230-H1.
IMG-HH-ALPSRP187700230-H1.
IMG-HH-ALPSRP187700230-H1.
IMG-HH-ALPSRP187700230-H1.
IMG-HH-ALPSRP187700230-H1.

insar allinput.xml
insar input.xml

O O O O O O O o o o

[
A -
B - R - - i o

.raw
.raw.
.raw.
.slc

.slc.
.raw

.raw.
.raw.
.slc

.slc.

aux
xml

xml

aux
xml

xml

simamp
topophase.
topophase.
topophase.
topophase.
topophase.
topophase.
topophase.
topophase.
z.rdr

zsch.rdr

cor
cor.xml
flat
flat.xml
geo
geo.xml
mph
mph.xml

The listing from your processing run may be different from what you see above, as the ISCE is
continuously under development, and these labs will use the latest version of the software.
However, most should have identical names, and you can using your knowledge of mdx.py from
Lab 2 to explore many of these files easily. Similarly, there may be small differences in the
displayed images or phase values relative to the examples in these tutorials.

At this point you can continue on to Lab 3.2 to explore in detail the output files you see in the
above listing or you can jump ahead to learn about running insarApp on the datasets from the
other sensors supported by ISCE in the Labs 4-7.

1. ALOS xml input file examples

The contents of insar input.xml should look like the following (where the names of the
files, 20070612 .xml and 20090802 .xm1, are most likely different from the names you may
have chosen; the names don’t matter as long as they are correctly identifying the files
containing the data indicated below):

<insarApp>
<component name="insarApp">
<property name="sensor name">
<value>ALOS</value>
</property>
<component name="Master">
<catalog>20070612.xml</catalog>
</component>
<component name="Slave">
<catalog>20090802.xml</catalog>
</component>
</component>
</insarApp>

The contents of 20070612 . xm1 should look like:

<component name="Master">
<property name="IMAGEFILE">
<value>../20070612/IMG-HH-ALPSRP073630230-H1.0 A</value>
</property>
<property name="OUTPUT">
<value>IMG-HH-ALPSRP073630230-H1.0 A.raw</value>
</property>
<property name="LEADERFILE">
<value>../20070612/LED-ALPSRP073630230-H1.0 A</value>
</property>
</component>

The contents of 20090802 . xm1 should look like:

<component name="Slave">
<property name="IMAGEFILE">
<value>../20090802/IMG-HH-ALPSRP187700230-H1.0 A</value>
</property>
<property name="OQUTPUT">

<value>IMG-HH-ALPSRP187700230-H1.0 A.raw</value>
</property>
<property name="LEADERFILE">
<value>../20090802/LED-ALPSRP187700230-H1.0 A</value>
</property>
</component>

The contents of insar allinput.xml should look like the following:

<insarApp>
<component name="insarApp">
<property name="sensor name">
<value>ALOS</value>
</property>
<component name="Master">
<property name="IMAGEFILE">
<value>../20070612/IMG-HH-ALPSRP073630230-H1.0 A</value>
</property>
<property name="OUTPUT">
<value>IMG-HH-ALPSRP073630230-H1.0 A.raw</value>
</property>
<property name="LEADERFILE">
<value>../20070612/LED-ALPSRP073630230-H1.0 A</value>
</property>
</component>
<component name="Slave">
<property name="IMAGEFILE">
<value>../20090802/IMG-HH-ALPSRP187700230-H1.0 A</value>
</property>
<property name="OUTPUT">
<value>IMG-HH-ALPSRP187700230-H1.0 A.raw</value>
</property>
<property name="LEADERFILE">
<value>../20090802/LED-ALPSRP187700230-H1.0 A</value>
</property>
</component>
</component>
</insarApp>

1. Understanding ISCE Output Files and Formats

If you ran the lab 3.1 or labs 4—7, you will have a directory containing many output files. These
files are the outputs at various stages of the workflow, and can be explored with mdx.py to gain

insight into their characteristics: dimensions, intrinsic feature characteristics, noise
characteristics, and other aspects. Each of these files is either a “flat” binary file containing
numbers that represent the images with no other formatting information, or an XML metadata
file describing the attributes of a corresponding image. In all cases, the binary data file has the
form <prefix>.<extension> and its corresponding XML metadata file has the form
<prefix>.<extension>.xml. The file extensions and their implication as to the data type stored in
the file and function in the ISCE workflow is given in the following table.

File Datatype Description ISCE outputs.
Extension
raw Byte, two Byte samples for | and Used to store raw radar echoes.
channel Q channels. (BIP
format)
.slc complex64, Complex floating point Used to store SLCs. Short for single
single channel | data, 8 bytes per look complex image.
sample, 4 for real and 4
for imaginary
.int complex64, same as .slc Used to store complex valued
single channel interferograms. Short for
interferogram.
.amp float32, two One line of first Used to store amplitude files. Short
channels amplitude channel, for amplitude.
followed by one line of
channel 2. (BIL format)
.cor float32, two One line of amplitude, Used to store coherence files. Short
channels followed by one line of | for correlation.
coherence (BIL format)
.unw float32, two One line of amplitude Used to store unwrapped phase
channels followed by one line of files. Short for unwrapped.
unwrapped phase in
radians (BIL format)
.mph complex64, same as .slc Used for simulated data to clearly
one channel indicate that the contents do not
contain real radar observations.

Short for magnitude/phase.

flat complex64, same as .slc Used to store interferograms whose
one channel topography phase component has
been removed. Short for flattened.

.mht float32, two One line of amplitude, Used for simulate data to clearly
channels followed by one line of indicate that the contents do not
data (BIL format) contain real radar observations.

Short for magnitude/height.

.geo Variable Depending on the .geo is used to indicate that the file
basename of the file contains geocoded data.
.rdr float32, one Depending on the file This extension is used to indicate
channel basename geometry parameters like lat,lon, z

etc. in radar coordinates.

As an example, let’s look at a “.int” file. Change your directory to the outputs of Lab 3.1.

> cd ~/data/lab3/alos/20070612 20090802

> 1ls *.int *.int.xml

resamplmage.int resampImage.int.xml resampOnlyImage.int
resampOnlyImage.int.xml

resampImage.int is a binary file containing a floating point representation of complex
numbers: 4 bytes for the real part followed by 4 bytes for the imaginary part. Using the unix
more Of less commands, you can examine some of the metadata fields. For example we see
in resampImage.int.xml some of the fields:

<property name="DATA TYPE">
<value>CFLOAT</value>

</property>

<property name="IMAGE TYPE">
<value>cpx</value>

</property>

<property name="NUMBER BANDS">
<value>1</value>
</property>

<property name="WIDTH">
<value>5194</value>

</property>

<property name="LENGTH">
<value>5529</value>

</property>

<property name="SCHEME">
<value>BIP</value>

</property>

These attributes state that the file data types are complex floating point numbers, that the file is
BIP (band interleaved by pixel) with only 1 band, and has the number of samples across
(“WIDTH”) of 5194 pixels and number of samples down (“LENGTH”) of 5529 pixels, making for
an image with 28,717,626 complex pixels, with each pixel being 8 bytes. So the total size of the
binary data file should be 229,741,008 bytes. And indeed that is the file’s size:

> 1ls -1 resampImage.int
-rw-rw-r-- 1 ubuntu ubuntu 229741008 Jul 25 19:02 resampImage.int

Feel free to explore other files and formats. The . amp file is an unusual format for instance,
being a 2-band BIP file with each of the image amplitudes in the two bands. For insarApp.py,
the final product is a . geo file, which is a geocoded version of an interferogram or other
derived product. The band interleaving scheme for . geo files varies depending on how the data
were derived. topophase.flat.geo is a complex 1-band BIP file like the . int file, as is
filt topophase.flat.geo. If an unwrapping filter had been applied to the interferogram,
however, the file would be BIL (band interleaved by line) with two bands.

1. Exploring the insarApp.py processing option space

insarApp.py represents the simplest kind of INSAR processing workflow, that of taking two
images acquired from nearly the same vantage point in orbit but at different times and creating
an interferogram in geocoded coordinates that represents any motion on the ground that may
have occurred between these times. In subsequent labs, we will see more sophisticated
processing of a time series of data allowing us to track these changes over time. First, however,
we will illustrate some of the flexibility built into the insarApp.py workflow. These flexibilities are
built into the framework, and relate to configurable parameters of individual processing
“‘components,” so these would be applicable to other workflows built from these components.

There are multiple ways to control the workflow. One way is to alter one of the configurable
parameters in the input xml file that controls insarApp.py. The list of configurable
parameters can be seen by using the —--help command line option, which also prints a usage
statement. The other way is to manipulate the steps of the work using the --steps command
line option. --steps allows the user to start the processing from a particular point in the
workflow and end it at another location. Clearly the processing cannot be started beyond a
point where a previous processing run completed (for a fresh data set, you must start at the
beginning!), but --steps allows the user to run individual workflow components one at a time
or in sequence allowing the alteration of input parameters for each workflow component.

In this lab, we will exercise the -—steps option to prepare the raw data for a data set, then alter
a processing parameter to reduce the total size of the data to be processed. Once we then
process all the way through, we will alter another processing parameter to allow phase
unwrapping of the result. With these simple examples, we will convey the main ideas of flow
control, and you will then be prepared to experiment on your own with other parameters and
steps options.

2. Preparing the raw data

Let’s first look at what is possible with -—-steps.

> insarApp.py --steps --help

2013-09-18 00:52:07,992 - isce.insar - INFO - ISCE VERSION = 1.0.0,
RELEASE SVN REVISION = 739,RELEASE DATE = 20120814, CURRENT SVN REVISION = 1154M
ISCE VERSION = 1.0.0, RELEASE SVN REVISION = 739,RELEASE DATE = 20120814,
CURRENT SVN REVISION = 1154M

Insar Application:
Implements InSAR processing flow for a pair of scenes from

sensor raw data to geocoded, flattened interferograms.

A description of the individual steps can be found in the README file
and also in the ISCE.pdf document

Use command line options '--start=<step>', '--end=<step>', --dostep=<step> to choose

the step names from the following list:

self.step list = ['startup', 'preprocess', 'verifyDEM', 'pulsetiming',
'estimateHeights', 'mocompath', 'orbit2sch', 'updatepreprocinfo', 'formslc',
'offsetprf', 'outliersl', 'prepareresamps', 'resamp',6 'resamp image',
'mocompbaseline', 'settopointl', 'topo', 'shadecpx2rg', 'rgoffset', 'rg outliers2',
'resamp_only', 'settopoint2', 'correct', 'coherence', 'filter', 'unwrap', 'geocode',
'endup']

If --start is missing, then processing starts at the first step.

If --end is missing, then processing ends at the last step.
If --dostep is used, then only the named step is processed.

Note that each of the names in the list called self.step list are workflow component
names, each carrying out a specific function briefly described in the table below (see ISCE.pdf
for a description of each component).

Step name Short functional description
startup Initialization of python objects for interferogram processing.
preprocess Extract raw radar echoes from original sensor files and store them in an

ISCE compatible format. Populate metadata fields for use in processing.

verifyDEM Check if the user has provided a DEM. If not download a DEM from the
SRTM archive.

pulsetiming Determine antenna position for every raw echo line by interpolating the

state vectors.

estimateHeights

Estimates the average heights for each of the SAR acquisitions from the
interpolated state vectors.

mocomppath Determines the reference mocomp orbit for focusing the SAR
acquisitions.
orbit2sch Transforms the state vector information for both SAR acquisitions into

the SCH coordinate system, while accounting for the reference mocomp
orbit.

updatepreprocinfo

Updates the parameters with common values for SAR focusing.

formslc Focuses raw radar echoes into a single-look complex image.

offsetprf Estimates offsets between the master and slave image while accounting
for slight differences in the PRFs.

outliers1 Culls the offset field by removing noisy offset estimates.

prepareresamps Setup the resampling routine for interferogram generation.

resamp Resample the slave SLC and cross multiply with the master SLC, to

create an interferogram.

resamp_image

Dump the offset field that was used for resampling as images.

mocompbaseline

Estimate the baseline to be used for topography removal, on a line by
line basis.

settopoint1

Sets the file names for the output of the topo module. To be read as
<set_topo_int1>.

topo Estimate the DEM in radar coordinates using the master orbit
information.

shadecpx2rg Simulate an amplitude image from the estimated DEM in radar
coordinates.

rgoffset Determine offset field between interferogram and simulated amplitude.

rg_outliers2 Cull the offsetfield to remove noise offset estimates.

resamp_only

Resample the interferogram to match the DEM. In this paradigm, we
trust the orbits and the geometry more than the focusing modules.

settopoint2

Sets the file names for the correct module. <To be read as
set_topo_int2>.

correct Remove the topography component of phase using the outputs of topo
module and mocompbaseline.

coherence Estimate the coherence from the topo-corrected interferogram.

filter Filter the corrected interferogram using an adaptive filter. Also estimate
the coherence for filtered interferogram using the phase standard
deviation.

unwrap Unwrap the interferogram using method of choice.

geocode Geocode the requested set of outputs.

endup Clean up and close files as needed.

For our purposes, we simply want to prepare the data for image formation. formSLC is the
image formation component, so we want to run the following workflow:

> cd /home/ubuntu/data/lab3/alos/20070612 20090802
> insarApp.py --steps --end="updatepreprocinfo” insar input.xml

This will process from raw data all the way to where the inputs are established for running form
SLC. --steps creates a PICKLE directory which stores all the information needed to restart
the process. This directory is referenced when the next run with --steps is executed. If you
examine the screen output at the end of the above command, you should see:

2013-09-18 00:42:14,352 - isce.insar.runFdMocomp - INFO - Updated Doppler
Centroid: 0.0419756826644

Dumping the application's pickle object insar to file
PICKLE/updatepreprocinfo

The remaining steps are (in order): ['formslc', 'offsetprf', 'outliersl',
'prepareresamps', 'resamp', 'resamp image', 'mocompbaseline', 'settopointl',
'topo', 'shadecpx2rg', 'rgoffset', 'rg outliers2', 'resamp only',
'settopoint2', 'correct', 'coherence', 'filter', 'unwrap', 'geocode', 'endup']

with the appropriate time stamp for your run. This shows you that you processed successfully
up to the step before formsL.C. Now we will see how to control the processing to process only
a portion of the available data.

3. Altering the processing parameters

The best way to see the possible options in a nutshell is with the help function of

insarApp.py, as follows:

> insarApp.py -—help

2013-09-18 00:49:20,766 - isce.insar - INFO - ISCE VERSION = 1.0.0,

RELEASE SVN REVISION = 739,RELEASE DATE = 20120814, CURRENT SVN REVISION =

1154M
ISCE VERSION = 1.0.0, RELEASE SVN REVISION = 739,RELEASE DATE =
CURRENT SVN REVISION = 1154M

Insar Application:

Implements InSAR processing flow for a pair of scenes from

sensor raw data to geocoded, flattened interferograms.

20120814,

The currently supported sensors are: ['ALOS', 'GENERIC', 'RADARSAT2',
'"ENVISAT', 'COSMO SKYMED SLC', 'COSMO SKYMED', 'RADARSAT1', 'ERS', 'TERRASARX',
'JERS ']

Usages:

insarApp.py <input-file.xml>
insarApp.py —--steps
insarApp.py --help
insarApp.py —-—-help --steps

See the table of configurable parameters listed in the table
below for alist of parameters that may be specified in the
input file. See example input xml files in the isce 'examples'
directory. Read about the input file in the ISCE.pdf document.

The user configurable inputs are given in the following table.
Those inputs that are of type 'component' are also listed in
table of facilities below.

To configure these parameters, enter the desired value in the
input file using a property tag with public name = to the name
given the table

name type mandatory doc
Sensor name str mandatory Sensor name
slc offset method str optional SLC offset estimation method

name. Use value=ampcor to run

ampcor

Master
slc offsetter

peg longitude (deg)

demFilename
posting

Slave

Form SLC

use dop

range looks
doppler method

Run Unwrapper

useHighResolutionDemOnly

geoPosting

peg latitude (deq)

offset search window size

unwrap

geocode list

unwrapper name

azimuth looks

correlation method

Slave Doppler

Dem

component
component
float

str

int
component
component
float
float

str

component

int

float

float

int

bool

tuple

str

float

str

component

component

mandatory
optional
optional
optional
optional
mandatory
optional
optional
optional
optional

optional
optional

optional

optional

optional

optional

optional

optional

optional

optional

optional

optional

Master raw data component

SLC offset estimator.

Peg Longitude in degrees
Filename of the DEM init file
posting for interferogram
Slave raw data component

SLC formation module

Choose whether to use master,
slave, or average Doppler for
processing.

Number of range looks to use
in resamp

Doppler calculation
method.Choices: 'useDOPIQ',
'useCalcbDop', 'useDoppler'.
Unwrapping module

If True and a dem is not
specified in input, it will
only download the SRTM highest
resolution dem if it is
available and fill the missing
portion with null values
(typically -32767).

Output posting for geocoded
images in degrees (latitude =
longitude)

Peg Latitude in degrees

Search window size used in
offsetprf and rgoffset.

True if unwrapping is desired.
To be unsed in combination
with UNWRAPPER NAME.

List of products to geocode.
Unwrapping method to use. To
be used in combination with
UNWRAP.

Number of azimuth looks to use
in resamp

Select coherence estimation
method: cchz=cchz wave

phase gradient=phase gradient
Master Doppler calculation
method

Dem Image configurable
component. Do not include this

in the input file and an SRTM

Dem will be downloaded for

you.
peg radius (m) float optional Peg Radius of Curvature in
meters
peg heading (degq) float optional Peg Heading in degrees
gross range offset int optional Override the value of the

gross range offset for
offsetestimation prior to

interferogram formation
azimuth patch size int optional Size of overlap/save patch

size for formslc

pickle dump directory str optional If steps is used, the
directory in which to store

pickle objects.
gross azimuth offset int optional Override the value of the

gross azimuth offset for
offset estimation prior to
interferogram formation
Culling Sequence tuple optional TBD
patch valid pulses int optional Size of overlap/save save
region for formslc

number of patches int optional How many patches to process of

all available patches

Master Doppler component optional Master Doppler calculation
method
pickle load directory str optional If steps is used, the

directory from which to

retrieve pickle objects

The help list above illustrates a number of parameters that control the workflow. Rather than
describing each one in detail, we will focus on just a few to illustrate how you would go about
changing them, and showing the effect of changing them on the processing. Let’s start with a
simple one: “number of patches”. This input parameter would be specified in the .xml input file
that is read by insarApp.py. The processing of radar imagery is done in chunks, where several
thousand lines of raw data are read, and processed to form a sub-image, then the next chunk is
read in with some overlap to create the next subimage, and so forth, until the entire image is
processed. These sub-images are then put together to form the complete image. Each chunk
is traditionally called a “patch”, and the user is allowed to either take the default, which is to
process the entire image, or specify the number of patches they wish to process.

First examine our familiar insarApp.xml (we used this in Lab 3.1):

> more insarApp.xml
<insarApp>

<component name="insarApp">
<property name="sensor name'">
<value>ALOS</value>
</property>
<component name="Master">
<catalog>Master.xml</catalog>
</component>
<component name="Slave">
<catalog>Slave.xml</catalog>
</component>
</component>
</insarApp>

Note that most parameters are not specified. Defaults are taken based on the sensor data.
Now let’s set the number of patches parameter here. Adding the lines

<property name="number of patches">
<value>1</value>
</property>

will do the trick. We have done this in a new file insarApp lpatch.xml, which you can list
to verify:

> more insarApp lpatch.xml
<insarApp>
<component name="insarApp">
<property name="sensor name">
<value>ALOS</value>

</property>

<property name="number of patches">
<value>1</value>

</property>

<component name="Master">
<catalog>Master.xml</catalog>
</component>
<component name="Slave">
<catalog>Slave.xml</catalog>
</component>
</component>
</insarApp>

Now by issuing the following command, we can pick up from where we left off with, specifying
that we only want to process one patch of data.

> insarApp.py —--steps --start='formslc' insarApp lpatch.xml

(When --start or --end is specified, the --steps switch is technically not needed.) At the
end of this process, you will have completed the full processing run. Now we can play with
another processing option: unwrapping.

4. Turning on unwrapping

Now that we’ve completed the full processing run (for a 1-patch subset of the full image to
speed up the demo), we can see that the output contains a geocoded interferogram, but it is not
unwrapped.

> mdx.py topophase.flat.geo

8 00 || topophase.flat.geo

Application Display Set Zoom Select Print Tools Help

We can see some nice deformation fringes on the top left of the image. To be able to exploit
this signature in further analysis such as stack processing, we need to unwrap this image.
Having run --steps previously, we can restart the process at the unwrapping stage by
modifying the insarApp 1patch.xml file to include the unwrap option. This change has
been made in the file named insarApp lpatch unwrap.xml. The additional lines added
tothe insarApp lpatch unwrap.xml file for unwrapping are the following (we are using
the unwrapper called icu, which is one of a few options available in isce):

<property name="unwrap">

<value>True</value>
</property>
<property name="unwrapper name'">
<value>icu</value>
</property>

We can now run just the unwrapper to the end of the workflow.
> insarApp.py --steps --start='unwrap' insarApp lpatch unwrap.xml
When this is finished, we can see additional files in the directory.

> 1ls -1ltr

insarApp lpatch unwrap.xml
insar.log

filt topophase.unw

filt topophase.unw.xml
geo.log

topophase.cor.geo
topophase.cor.geo.xml

filt topophase.flat.geo
filt topophase.flat.geo.xml
topophase.flat.geo
topophase.flat.geo.xml
phsig.cor.geo.xml
phsig.cor.geo

los.geo

los.geo.xml
resampOnlyImage.amp.geo
resampOnlyImage.amp.geo.xml
dem.crop

filt topophase.unw.geo
filt topophase.unw.geo.xml
catalog

isce.log

insarProc.xml

Note that in addition to topophase.flat.geo, there are a number of other files. The
geocoded unwrapped dataisin filt topophase.unw.geo. Using mdx.py to display, then

changing the scale to 4*PI color wrap (right-click on Pha button and set wrap to 12.56), you
should see:

> mdx.py filt topophase.unw.geo

® 00 %/ filt_topophase.unw.geo

Application Diszplay Set Zoom Select Print Tools Help

In comparing to the image above, you note that the phase colors are much smoother (due to a
filtering operation applied before unwrapping), and the phase is no longer subject to a restriction
to the interval from 0 to 2 PI. The black regions are places the unwrapper failed to unwrap,
either due to no data on the periphery, or low correlation.

You have now successfully completed the insarApp.py workflow exploring a number of options,
including unwrapping. If you are interested in seeing this entire scene rather than the 1-patch
subset, feel free to start from the beginning deleting the “number of patches” attribute in the
.xml file.

In a later lab, you will apply your skills to preparing a stack for time-series processing.

Now that you are experienced at processing data from a variety of sensors and understand the
data formats, let’'s spend some time examining a few data sets to see if we can understand the
intrinsic characteristics of the data. We will use two data sets: one from Afar at L-band and one
from Hawaii at X-band. These data sets should be familiar to you from the processing labs.
Along the way we will expose to you some of the more advanced features of mdx.

First, let’s look at the L-band data in the Afar.
> cd /home/ubuntu/data/sites/Afar alos/A599/0230/20070612 20090802

To get an overview of the situation, let’s display the geocoded interferogram with a zoom factor
of -2 (zooming out).

> mdx.py -z -2 filt topophase.flat.geo

800 |%| filt_topophase.flat.geo

Application Dizplay Set Zoom Select Print Tools Help

Note that relative to the borders of the display window, this image is rotated by about 8 degrees

counterclockwise. This is because the image is geocoded to a north-south, east-west grid, but
the satellite is on an orbit that is a few degrees off from a north-south orbit. Other than the black
border triangles where there is no data for this pair of scenes, the interferogram shows nearly
complete coverage. There are several places where there is water in this scene that are also
black and show no interferometric fringes, but otherwise the phase is complete.

Contrast this to the X-band data over Hawaii.

CHAPTER 5

Processing ERS Data

69

1. Understanding ERS Data Set Names

The European Space Agency (ESA) launched and operated two nearly identical satellites call
the European Remote Sensing (ERS) satellites, ERS-1 (1992-2000) and ERS-2 (1995-2011,
although data acquired after 2000 has problems) (see also Table 1 of Lab 3.0). In this lab, we
will learn how to process data from these satellites. Because the two satellites had the same
radar characteristics and the same orbits for most of their operation, most of the data from the
two satellites can be used interchangeably. The two satellites were operated in what ESA called
a Tandem mission especially during 1995-1996 and 1998-1999 where the ERS-1 and ERS-2
satellites acquired data with a 1-day time separation over most of the Earth’s land area.

SAR_IM__OPsxxxYYYYMMDD_HHMMSS_ddddddddPCCC_TTTTT_OOOOO iiii.Ey ES

A R A

Prod. Date Time Length Track Orbit ERS-1/2
level in secs

ERS1_170 2925 65154.zip
- o WInSAR
T T T T : DAT_01.01 convention

I= = =
ERS-1/2 Track Frame Orbit LEA_01.01

ERO0Z_SAR_RAW_0P_20060603T183007_20060603T183023_ESR_058140.CEOS.gz

} - } b oo oo

ERS-1/2 Prod. Start Date/ Time End Date/ Time Orbit =77 LEA_01.01
level

The graphic above shows three standard naming conventions for ERS data files from three
different processing and distribution centers in the world: The ESA archives, the Alaska Satellite
Facility, and UNAVCO. Some ERS data is also available from the GEO Geohazards
Supersites. The ESA “Envisat-style” file format (top line) combines the data with the metadata
into a single file, similar to the format for Envisat data (see Lab 5). ASF and UNAVCO supply
compressed files that contain two files each, the data, and metadata (so-called “leader” file),
with different names for the container file. The data files inside have very simple and generic
names as show above.

2. How to insert ERS filenames into the ISCE xml input files

The basic ISCE input file is similar to that for ALOS PALSAR. If you have not gone through
the tutorial for running ISCE with ALOS, you should at least read through Step 2 of that tutorial,
if not also setting up the input file and processing the ALOS data used in Step 3 of that tutorial.
In this tutorial we assume you have read Step 2 of the ALOS tutorial and will only talk about the
differences for processing ERS-1 and ERS-2 data.

As in the ALOS input files the ERS input files contain the MASTER and SLAVE component tags
that contain the property tags IMAGEFILE, LEADERFILE, and OUTPUT. Different from the
ALOS input files is two new property tags (the orbit type and the path to the directory containing
the orbit files) that contain information about the orbit data for the data take. The ALOS
LEADERFILE contained sufficiently accurate orbit data for INSAR processing. The ERS-1 orbit
data in the LEADERFILE, however, are generally not adequate for accurate processing of
INSAR data. The Delft Institute for Earth-oriented Space Research (DEOS) provides precise
orbits for the entire ERS-1 mission (and most of the ERS-2 mission). We have installed these
orbits in the directory /home /ubuntu/data/orbits/ERS/ODR/ERSL.

If you use the 1s command to list the contents of that directory you will see over 500 files
named ODR.nnn. These files contain the orbital data records (time and position) for several
day long “arcs” of the orbit. The number nnn in the name of the ODR file indicates the arc
number. In that directory you will find the key to determining which arc is needed for your data
take in the arclist file,

> 1s /home/ubuntu/data/orbits/ERS/ODR/ERS1/arclist

The arclist file lists the start and end time for each of the ODR orbital data record arc files.
You can use the cat command to list the more than 500 lines of the arclist file or you can use
the more command to see just one page full of the contents of the arclist file, just to get a taste
of the contents of that file (page through the file using the “spacebar” and terminate the output

[T}

by typing “q"),
> more /home/ubuntu/data/orbits/ERS/ODR/ERS1/arclist

You will never need to read the arclist file to find the correct ODR arc file to use. The
ISCE processor does that for you. You only need to tell ISCE the type of orbit to use in the
processing and the name of the directory containing the arclist and ODR files. The way to
tell ISCE this information is to insert the following ORBIT TYPE and ORBIT DIRECTORY tags
in both the Master and the Slave component

<property name="ORBIT TYPE">
<value>ODR</value>
</property>

<property name="ORBIT DIRECTORY">
<value>/home/ubuntu/data/orbits/ERS/ODR/ERS1</value>
</property>

3. Processing ERS data with ISCE

You should change your directory to the lab4 directory for ERS processing. You can position
yourself in that directory from wherever you might be positioned currently as follows:

> cd
> cd data/lab4d/ers

There are two directories there for two different data acquisition dates:

> 1s
19950421 19971227

Within those directories you will see ‘tar.gz’ files, which are compressed containers of several
files. The names of these ‘tar.gz’ files follow the UNAVCO name convention described at the
start of this lab. To unpack these files use the tar command as follows,

> cd 19950421

> 1s
EROL SAR IM 0P 19950421T183128 19950421T183145 DPA 19697 0000.CEOS.tar.gz

> tar -xzvf ERO1_SAR IM 0P 19950421T183128 19950421T183145 DPA 19697 0000.CEOS.tar.gz
> 1s

DAT 01.001
ERO1_SAR IM 0P _19950421T183128 19950421T183145 DPA 19697 0000.CEOS.tar.gz

LEA 01.001

NUL_DAT.001

SAR_IM OPXDLR19950421 183128 00000017G145 00170 19697 7041.El.ps
VDF_DAT.001

The relevant files as inputs to ISCE are the file LEA 01.001, which is the leader file, and the
fle DAT 01.001, which is the image file.

Similarly forthe 19971227 directory:

> cd ../19971227

> 1s

ER0O2 SAR IM 0P 19971227T183128 19971227T183145 DPA 14052 0000.CEOS.tar.gz
> ta;_—xz;} ﬁggz_égR_IM__OP_l99712275183128_19971227T18§145_;éA_14ogé_oooo.CEos.tar.gz
> 1s

DAT 01.001

ER02 SAR IM OP_19971227T183128 19971227T183145 DPA 14052 0000.CEOS.tar.gz
LEA 01.001

NUL_DAT.001
SAR IM OPXDLR19971227 183128 00000017A028 00170 14052 7031.E2.ps
VDF_DAT.001

Note that the tar. gz file in the 1995 directory starts with ER01 indicating that it was from the
ERS-1 instrument and the tar. gz file in the 1997 directory starts with ER02 indicating that it
was from the ERS-2 instrument. We will process these data sets from these two different
compatible instruments using insarApp.py. In each directory there is an IMAGERY file
named DAT 01.001 and a LEADER file named LEA 01.001 corresponding to two different
frames with different acquisition times encoded in the associated tar. gz filenames. Because
the actual file names for each date are the same, it is essential that the data for each date be in
separate directories.

To prepare for processing the ERS data, first make a new processing directory in the
data/lab4/ers directory (first making sure that you are in the proper directory using the pwd
command or use the cd command once without an argument to first move to the top directory
and then with the argument data/lab4/ers to move into the proper directory),

> cd

> cd data/labéd/ers

> pwd
/home/ubuntu/data/lab4d/ers

> mkdir 19950421 19971227

> cd 19950421 19971227

> pwd
/home/ubuntu/data/lab4/ers/19950421 19971227

At this time you should be able to copy your input files (whether you used the all-in-one or the
multiple input files styles) from the 1ab3/alos/20070612 20090802 directory into the
current 1ab4/ers/19950421 19971227 directory,

>cp ../../../1lab3/alos/20070612 20090802/insar input.xml
Notice the “.” at the end of that command line. It is shorthand for the “current directory”. This
command copies the file insar input.xml atthe path

../../../1lab3/alos/20070612 20090802/insar input.xml

into the current directory giving it the same name insar input.xml. Note that the name of
this file is not significant as it is entered as the first (usually only) xml file on the command line.
You may call it anything you like, such as insar 19950421 19971227.xml or
insarApp.xml.

If you used the all-in-one style, then this is the only file you need to copy. If you used multiple
files, then you will need to copy the “Master” and “slave” xml files also. Those files can have
any name you chose. Remember, all that matters is that the file names you use are also the
names entered in the catalog tags in the Master and Slave component tags in the
insar_input.xml file.

If you followed the names in the text of the ALOS Datasets lab, then you probably used
Master.xml and Slave.xml, and you can use the cp command as above with the “.” at the
end of the command to copy those files from the alos directory to the current directory using the
same names.

If you followed the “date” naming convention given in the ALOS examples link, however, then
you may have called them 20070612 .xm1 and 20090802 .xm1. When you copy those files
to the current directory, then you should change the date on the filename. For the Master you
would use the command,

>cp ../../../1lab3/alos/20070612 20090802/20070612.xml 19950421 .xml

The second argument on this version of the cp command says to copy the contents of the file
20070612 .xml indirectory ../../alos/20070612 20090802 into a file named
920424 .xml in the current directory.

Similarly for the Slave,
>cp ../../../lab3/alos/20070612 20090802/20090802.xml 19971227 .xml

Now use your favorite editor to enter the paths and names of this lab’s ERS files into the
IMAGEFILE, LEADERFILE, and OUTPUT tags in your input files. Then you should be able to
copy or type in the ORBIT TYPE and ORBIT DIRECTORY tags given in Step 2 above.

Once you have inserted these tags into both your Master and Slave component tags,
then you should be ready to process the data. At this point you can either go ahead and try to
run insarApp.py and let the computer tell you if you have prepared the input file(s) correctly (if
the processing runs to the end in about 20 minutes) or incorrectly (if the processing terminates
early with a computer generated “traceback” indicating the location of the error in the code),

> insarApp.py insar input.xml

where insar input.xml is the file you have prepared using either the all-in-one file
containing the complete Master and Slave component tags or the multiple input files where
the insar input.py file contains catalog tags that point to two other xml files containing
the information for the Master and Slave components.

If you choose to be cautious or if you attempted to process and it did not run to the end
successfully and you cannot figure out what is wrong with your input files, then you can
compare your input file(s) with these examples.

4. Your completed run

Now we can look at the final geocoded, wrapped interferogram with MDX:

> mdx.py filt topophase.flat.geo &

% filt_topophase.flat.geo

Application Display Set Zdoom Select Print Tools Help

Z00M: -8

1. ERS-1 xml input file examples

The contents of insar input.xml for the multiple input files style should look like the
following (where the names of the files, 19950421 .xml1 and 19971227 .xml, are most likely
different from the names you may have chosen; the names don’'t matter as long as they are
correctly identifying the files containing the data indicated below):

<insarApp>
<component name="insarApp">
<property name="sensor name">
<value>ERS</value>
</property>
<component name="Master">
<catalog>19950421.xml</catalog>
</component>
<component name="Slave">
<catalog>19971227.xml</catalog>
</component>
</component>
</insarApp>

The contents of 19950421 .xm1 should look like:

<component name="Master">
<property name="IMAGEFILE">
<value>../19950421/DAT 01.001</value>
</property>
<property name="LEADERFILE">
<value>../19950421/LEA 01.001</value>
</property>
<property name="ORBIT TYPE">
<value>"ODR"</value>
</property>
<property name="ORBIT DIRECTORY">
<value>/home/ubuntu/data/orbits/ERS/ODR/ERS1</value>
</property>
<property name="OUTPUT">
<value>"master.raw"</value>
</property>
</component>

The contents of 19971227 .xm1 should look like:

<component name="Slave">
<property name="IMAGEFILE">
<value>../19971227/DAT 01.001</value>
</property>
<property name="LEADERFILE">
<value>../19971227/LEA 01.001</value>
</property>
<property name="ORBIT TYPE">
<value>"ODR"</value>
</property>
<property name="ORBIT DIRECTORY">
<value>/home/ubuntu/data/orbits/ERS/ODR/ERS2</value>
</property>
<property name="OUTPUT">
<value>"slave.raw"</value>
</property>
</component>

The contents of the all-in-one style of input file insar allinput.xml should look like the
following:

<insarApp>
<component name="insarApp">
<property name="sensor name">
<value>ERS</value>
</property>
<component name="Master">
<property name="IMAGEFILE">
<value>../19950421/DAT 01.001</value>
</property>
<property name="LEADERFILE">
<value>../19950421/LEA 01.001</value>
</property>
<property name="ORBIT TYPE">
<value>"ODR"</value>
</property>
<property name="ORBIT DIRECTORY">
<value>/home/ubuntu/data/orbits/ERS/ODR/ERS1</value>
</property>
<property name="OUTPUT">

<value>"master.raw"</value>
</property>
</component>
<component name="Slave'">
<property name="IMAGEFILE">
<value>../19971227/DAT 01.001</value>
</property>
<property name="LEADERFILE">
<value>../19971227/LEA 01.001</value>
</property>
<property name="ORBIT TYPE">
<value>"ODR"</value>
</property>
<property name="ORBIT DIRECTORY">
<value>/home/ubuntu/data/orbits/ERS/ODR/ERS2</value>
</property>
<property name="OUTPUT">
<value>"slave.raw"</value>
</property>
</component>
</insarApp>

CHAPTER 6

Processing Envisat Data

81

1. Understanding Envisat Data Set Names

In this tutorial we will process an Envisat dataset covering the 2010 M7.2 Baja California,
Mexico earthquake (official name El Mayor-Cucapah earthquake).

We will learn how to process SAR data from the European Space Agency’s Envisat satellite
(actually called advanced SAR or ASAR). Envisat SAR data are typically obtained either directly

from ESA, UNAVCO’s WInSAR archive or through the GEO Geohazards Supersites archive.
The files may be named differently depending on the source.

ASA_IM__0CNPDE20040623_031040_000000752028_00018_12096 _0013.N1

S
T convention

m

Prod. Date Time Length Track Orbit
level yyyymmdd hhmmss in secs
obsolete
ENV1 4 442 2871 2889 18031.baq ghsoee

VNN o

Beam Track Frame Frame Orbit
number Start End

Some of the files in the WInSAR archive in the past used a different naming convention from the
standard ESA naming convention, as shown in the diagram above. All of the Envisat data in the
WInSAR archive at UNAVCO is now converted back to the original ESA names, but files
downloaded some years ago might have the special “.baq” name. In both cases, the file content
is the same, only the name is different.

Envisat SAR data files have both metadata and binary data in the same file. The metadata at
the beginning is ASCII text and can be viewed in your terminal, but the binary data later in the
file is not directly viewable (and viewing it may confuse your terminal). ISCE presently supports
only processing the raw (Level 0) data from Envisat ASAR acquired in imaging or stripmap
mode, so make sure the filename starts with ASA_IM__ 0 if it has the standard ESA name.

2. How to insert Envisat filenames into the ISCE xml input files

The basic ISCE input file for Envisat is similar to that for ALOS PALSAR. If you have not gone
through the tutorial Lab 3.1 for running ISCE with ALOS, you should at least read through Step
2 of that tutorial, if not also setting up the input file and processing the ALOS data used in Step
3 of that tutorial. In this tutorial we assume you have read Step 2 of the ALOS tutorial and will
only talk about the differences for processing Envisat data.

As in the ALOS and ERS input files the Envisat input files contain the MASTER and SLAVE
component tags that contain the property tags IMAGEFILE and OUTPUT, but for Envisat there is
no LEADERFILE tag because the leader information is included in the image file. Different
from the ALOS and ERS input files are two new property tags (the ancillary orbit and instrument
files) that contain information about the orbit data for the data take and SAR instrument
calibration. Both of these properties are required for Envisat data processing.

The way to tell ISCE the orbit and instrument file information is to insert the following
ORBITFILE and INSTRUMENTFILE tags (order is not important) in both the Master and the
Slave components (the orbit files will be different for each date and INS files may also differ
so we have to specify these for both input scenes):

<property name="INSTRUMENTFILE">
<value>"/home/ubuntu/data/instruments/ENVISAT/ASA INS AXVI
EC20091217 114637 20090428 100000 20101231 235959"</value>
</property>

<property name="ORBITFILE">
<value>"/home/ubuntu/data/orbits/ENVISAT/VOR/DOR VOR AXVF-
P20100423 084900 20100327 215526 20100329 002326"</value>
</property>

The Envisat data files do not contain the orbit information. You have to download the orbit
files separately. We will use the DORIS orbit files (DORIS is the name of the method they used
to determine the Envisat orbits) that can be downloaded from ESA, which requires registration
with ESA. The location of the link to the orbit data (at the moment) is
https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/doris-precise-orbit-sta
te-vectors-1502. If this link does not work, then search for “Envisat DORIS orbits” in your
favorite search tool. The Delft Institute for Earth-oriented Space Research (DEOS) also provides
precise orbits for the early part of the Envisat mission, but they stopped calculating the orbits
circa 2007, so they are not so useful. We have installed the necessary Envisat DORIS orbits in
the directory /home/ubuntu/data/orbits/ENVISAT/VOR The Envisat DORIS orbit file
names have three dates and times in their file names, with the first date and time showing the
time the file was produced, the second date and time telling the start of the time period covered

by the file, and the third date and time telling the end of the period, e.g.,

DOR_VOR AXVF-P20100423 084900 20100327 215526 20100329 002326 was
produced 2010/04/23 and covers the time interval from 2010/03/27 21:55:26 to 2010/03/29
00:23:26 or basically the entire day 2010/03/28 plus two hours the day before and 23 minutes
the day after. The DOR means it is a DORIS orbit file and VOR means that it is the final verified
orbit. At present, you have to find the correct orbit data file and enter the name in the ISCE input
files, unlike the automated search implemented for ERS orbits. Automated search should be
added to ISCE later.

You also need the Envisat SAR instrument calibration file or INS file to read the Envisat data.
They updated the INS files at several times during the Envisat mission, so there are different
files for different time periods. The INS files can be downloaded from ESA’s Envisat ASAR
auxiliary data directory (http://earth.eo.esa.int/services/auxiliary_data/asar/current/) without
registration. The INS file names also have three dates and times in their file names, with the first
date and time showing the time the file was produced, the second date and time telling the start
of the time period covered by the file, and the third date and time telling the end of the period
(just like the orbit file names), e.g.,

ASA_INS AXVIEC20091217 114637 20090428 100000 20101231 235959 was
produced 2009/12/17 and covers the time interval from 2009/04/28 to 2010/12/31. Sometimes
ESA produced a new INS file before the planned end of a previous file, so you should use the
newest file that covers the time interval of the data you have. Again, ISCE does not presently
have the capability to search through a directory of INS files and select the correct one for the
image files, so you need to manually select the file.

3. Processing Envisat data with ISCE

You should change your directory to the lab5 directory for Envisat processing. We will use the
Envisat scenes that we downloaded from UNAVCO earlier for this lab. You can position
yourself in that directory from wherever you might be positioned currently as follows:

> cd
> cd data/lab5/env

There should be two directories there for two different data acquisition dates, if you completed
the download earlier:

> 1s
20100328 20100502

Let’s check the two data directories to make sure that the files are there. First go into the
20100502 directory:

> cd 20100502

> 1s

ASA_IM _0OCNPDE20100502 175001 000000172089 00084 42723 0354.N1
ASA IM OCNPDE20100502 175016 000000172089 00084 42723 0354.N1

There should be two data files as shown, because we downloaded two frames for this date.
Make sure the files have 20100502 in the name so that the right dates are in this directory.
As we saw earlier in this lab, the scenes have 00084 in the name so they are from Envisat
track (relative orbit) 84.

Now let’'s check the data directory for the other date 20100328. We can go up and back down
into that directory with this cd command:

> cd ../20100328/
> 1s
ASA IM OCNPDE20100328 175004 000000162088 00084 42222 9504.N1

ASA TM_OCNPDE20100328 175019 000000162088 00084 42222 9504.N1

Again, check to see if you have the two data files for the 20100328 date as shown. Unlike the
ERS data, the Envisat data files do not require any unpacking before we can use them.

To prepare for processing the Envisat data, first make a new processing directory in the
data/lab5/env directory (first making sure that you are in the proper directory using the pwd
command or use the cd command once without an argument to first move to the top directory
and then with the argument data/lab5/env to move into the proper directory),

> cd

> cd data/lab5/env

> pwd
/home/ubuntu/data/lab5/env

> mkdir 20100502 20100328

> cd 20100502 20100328

> pwd
/home/ubuntu/data/lab5/env/20100502 20100328

For Envisat data, you can either use the separate files method, with the input information about
each date (master and slave components) in a separate file, or the all-in-one method. Here we
will explain the separate file method that is a little easier to read (in my opinion).

First, create the input component file for the 20100502 date:

> nano 20100502.xml

Then enter the IMAGEFILE, INSTRUMENTFILE, ORBITFILE, and OUTPUT information about
this date as described above. For this processing, we will use a list of input images (file names
with paths in quotes, inside square brackets) to process the two frames from each date
together:

<?xml version="1.0" encoding="UTF-8" standalone="no" 2>

<component name="Envi">
<property name="IMAGEFILE">

<value>['../20100502/ASA IM OCNPDE20100502 175001 000000172089 00084
42723 0354.N1"',"'../20100502/ASA IM OCNPDE20100502 175016 0000001720
89 00084 42723 0354.N1']</value> <!-- image files -->

</property>

<property name="INSTRUMENTFILE">

<value>"/home/ubuntu/data/instruments/ENVISAT/ASA INS AXVIEC20091217
114637 20090428 100000 20101231 235959"</value> <!-- instrument file
-=>

</property>

<property name="ORBITFILE">

<value>"/home/ubuntu/data/orbits/ENVISAT/VOR/DOR VOR AXVF-P20100604 1
04000_20100501_215526_20100503_002326"</Value> <!-—- orbitfile -->

</property>
<property name="OUTPUT">
<value>"20100502.raw"</value> <!-- output raw file -->
</property>
</component>

Let’s check that the paths for some of the files specified in the XML work on your system (watch
out for extra breaks in the long lines):

> 1s

../20100502/ASA IM OCNPDE20100502 175001 000000172089 00084 42723 03
54 .N1

../20100502/ASA IM OCNPDE20100502 175001 000000172089 00084 42723 03
54 .N1

> 1s
/home/ubuntu/data/instruments/ENVISAT/ASA INS AXVIEC20091217 114637 2
0090428 100000 20101231 235959
/home/ubuntu/data/instruments/ENVISAT/ASA INS AXVIEC20091217 114637 2
0090428 100000 20101231 235959

Now create the input component file for the 20100328 date, and again enter all the required
information for this component:

<?xml version="1.0" encoding="UTF-8" standalone="no" 2>

<component name="Envi">
<property name="IMAGEFILE">

<value>['../20100328/ASA IM OCNPDE20100328 175004 000000162088 00084
42222 9504.N1','../201
00328/ASA IM OCNPDE20100328 175019 000000162088 00084 42222 9504 .N1'
]</value> <!-- image files -->

</property>

<property name="INSTRUMENTFILE">

<value>"/home/ubuntu/data/instruments/ENVISAT/ASA INS AXVIEC20091217
114637 20090428 100000
20101231 235959"</value> <!-- instrument file -->

</property>

<property name="ORBITFILE">

<value>"/home/ubuntu/data/orbits/ENVISAT/VOR/DOR _VOR AXVEF-P20100423 0
84900 20100327 215526 2

0100329 002326"</value> <!-- orbitfile -->

</property>
<property name="OUTPUT">
<value>"20100328.raw"</value> <!-- output raw file -->
</property>
</component>

Now we need to create the main insaraApp.xml file. We will use the 20100502 scene as
the master scene, and we will add some other properties here. The first one is to set the
posting or spacing of pixels in the interferogram, so that insarApp will adjust the number of
looks or SLC pixels averaged in the interferogram. We will also request phase unwrapping and
use the “icu” unwrapping program.

<?xml version="1.0" encoding="UTF-8"?>

<insarApp>

<component name="insar">

<!-- Posting is automatically calculated if not specified here.
-——>

<property name="Posting">
<value>40</value>

</property>

<property name="unwrap">
<value>True</value>
</property>

<property name="unwrapper name">
<value>icu</value>

</property>

<property name="Sensor Name">
<value>Envisat</value>

</property>

<property name="Doppler Method">
<value>useDOPIQ</value>

</property>

<component name="Master">
<catalog>20100502.xml</catalog>

</component>

<component name="Slave">
<catalog>20100328.xml</catalog>

</component>

</component>
</insarApp>

Now we are ready to run the processing, using the steps option, in case we want to re-run steps
later. You may want to take a coffee or water break.
> insarApp.py insarApp.xml --steps

4. Your completed run

At the end of the processing, you should see something like this:

FHH A H 4 S S
S EE RS E R R AR E

2014-07-30 17:29:18,420 - isce.insar.runGeocode - INFO -

s E LR AR R R R EEE R R AR E L
xR L

runGeocode - Outputs

runGeocode.outputs.LONGITUDE SPACING = 0.0008333333333333334

runGeocode.outputs.MINIMUM GEO LONGITUDE = -116.09083333333334
runGeocode.outputs.LATITUDE SPACING = -0.0008333333333333334
runGeocode.outputs.MAXIMUM GEO LATITUDE = 31.355000000000004
runGeocode.outputs.MAXIMUM GEO LONGITUDE = -114.4175

runGeocode.outputs.GEO LENGTH = 2560
runGeocode.outputs.MINIMUM GEO LATITUDE = 33.487500000000004
runGeocode.outputs.GEO WIDTH = 2009

A A A A A AR A R AR AR AR AR AR AT AR S
FHAF AR AA A ISR AR

2014-07-30 17:29:18,420 - isce.insar - INFO - Total Time: 807 seconds

Note that ISCE has downloaded the SRTM 3-arcsecond DEMs, and the final geocoding has this
spacing (LONGITUDE SPACING = 0.0008333333333333334), because part of the area is
outside the USA so the 1-arcsecond SRTM data is not publicly available (yet). Let's have a look
at the geocoded wrapped interferogram (it is large, so we tell MDX to zoom out by 4 to start):

> mdx.py filt topophase.flat.geo -z -4 &

% filt_topophase.flat.geo

Application Display Set Zoom Select Print Toolz Help

Now we can see a lot of fringes! This is the deformation from the M7.2 earthquake. Let’s look at
the unwrapped phase now, in radar coordinates:

> mdx.py filt topophase.unw -z -8 &

x| filt_topophase.unw

Application Display Set Zoom Select Print Tools Help

Z00M; -8x

We can see that the “icu” unwrapper only managed to unwrap the top (north) side of the fault
rupture, and it stopped unwrapping after the first patch (3700 lines of the multi-look
interferogram). Let’s try a different unwrapping program called SNAPHU (Statistical-cost,
Network-flow Algorithm for Phase Unwrapping) written by Curtis Chen when he was at Stanford
(see Chen and Zebker, 2002). Edit your insarApp.xml file and change the “unwrapper name”
property value from “icu” to “snaphu”. Since we ran the initial processing with “--steps”, we
can just restart the processing at the unwrap step without having to rerun the earlier steps (we
also don’t need to specify the --steps flag in addition to the --start=unwrap):

> insarApp.py insarApp.xml --start=unwrap

The SNAPHU program can take a while to run, depending on how large and noisy your
interferogram is. Low coherence, noisy data take a long time to unwrap and “snaphu” unwraps
everything, unlike the “grass” and “icu” unwrappers that mask out the noisy areas before
unwrapping. When the unwrapping is complete, take a look atthe filt topophase.unw or
filt topophase.unw.geo file with mdx.py. Change the color wrap on the phase to 100
radians to see the large displacement from the earthquake like this (I also adjusted the
exponent of the amplitude image to 0.5):

% filt_topophase.unw.geo

Fpplication Dizplay Set Zoom Select Print Tools Help

Z00M; 4=

The 2010 M7.2 earthquake ruptured about 120 km of faults in northern Mexico. Rocks on the
southwest side of the fault moved up to 2 meters northwest relative to the northeast side. See

this paper for more information:
Wei, S., Fielding, E. J., Leprince, S., Sladen, A., Avouac, J.-P., Helmberger, D. V.,
Hauksson, E., Chu, R., Simons, M., Hudnut, K. W., Herring, T., & Briggs, R. W. (2011).

Superficial simplicity of the 2010 EI Mayor—Cucapah earthquake of Baja California in
Mexico. Nature Geosci, 4, 615-618.

http://www.nature.com/ngeo/journal/v4/n9/full/ngeo1213.html

96

CHAPTER 6. PROCESSING ENVISAT DATA

CHAPTER 7

Processing COSMO-SkyMed Raw Data

97

1. Processing COSMO-SkyMed data from raw data files

In this lab, you will learn how to process COSMO-SkyMed data from raw data files, while
exploring some of the configurability capabilities of ISCE. As we've seen in previous labs,
InsarApp.py is set up with sensor-dependent default parameters for all the processing steps.
For many data sets, all the user needs to do is set up the input data file names in the master
and slave XML files and update insarApp.py's control file (typically named insar.xml) to
reference them. Then the command

insarApp.py insar.xml

will process the data from raw to geocoded interferograms. There are times however when the
default parameters are not optimal. We saw a simple example of this in lab 3.3 where the
default settings did not unwrap the interferogram. We could set the unwrap flag in the control
file to cause unwrapping to occur.

In this lab we will demonstrate how to affect control parameters through configurability files
associated with individual processing components. The README file at the top level of the
ISCE distribution describes the details of the configurability options and hierarchy of where
ISCE looks to find parameters it needs to process. Here we will first process a patch of data to
completion to allow us to see just the beginning of the file. We will examine the outputs and
decide that we want to change a particular processing option, create a configuration file for the
appropriate component, and reprocess with that new option. We will then look at the output
again to see how things have changed.

2. Understanding CSK Data Set Names

C3KS<i>_<YYY_Z> <MM>_<53> <PP>_<s><p>_ <D><G>_<YYYYMMDDhhmmss>_<YYYYMMDDhhmmss>.hS

LA S S A B O t t

Sat. Prod. Mode Swath Pol Look Pass Start End
Number Type " side Dir. Date/Time Date/Time

The graphic above shows the standard naming conventions for COSMO-SkyMed (CSK) data
files. CSK data comes with all of the data and metadata, including the orbit, in a single HDF5

(.h5) file. Sometimes the data is delivered with some additional files, but these are not used in
the ISCE processing.

3. How to insert CSK filenames into the ISCE xml input files

The file names can be inserted into a master and slave component through configuration files
as shown previously:

\%

cd

cd data

cd labo6

> cat Master.xml

VvV Vv

<component name="Master">

<property name="HDF5">

<value>data/CSKS4 RAW B HI 08 HH RA SF 20110327162502 201103271

62510.h5</value>

</property>

<property name="OUTPUT">

<value>20130327.raw</value>

</property>

</component>

> cat Slave.xml
<component name="Slave">
<property name="HDF5">
<value>data/CSKS4 RAW B HI 08 HH RA FF 20110311162513 2011
0311162521 .h5</value>
</property>
<property name="OUTPUT">
<value>20061231.raw</value>
</property>
</component>

Note that in this case, the h5 data files reside in a subdirectory called data, so the filename is
prepended with the relative path data/. These lines can also be directly inserted into the
insarApp input file. For this lab, the input file is named insar 130327 130311.xml. Ifyou
print that file to the screen, you will see these lines verbatim inline in the file.

>cat insar 130327 130311.xml

(shows the same as above text in Master.xml and Slave.xml)

4. Running a patch of data using component configurability and
examining the results

Let’s start with an input file that has some particular values set :

insar 130327 130311.xml. Inthisinput file, the only specified parameters are the posting
of the output grid and the master and slave data files, and of course the sensor name. All other
parameters are set to their defaults that are deemed appropriate for this sensor.

> cat insar 130327 130311.xml
<insarApp>
<component name="insar">
<property name="posting">
<value>20</value>
</property>
<property name="Sensor Name">
<value>COSMO_SKYMED</value>
</property>
<component name="master">
<property name="HDF5">
<value>data/CSKS4 RAW B HI 08 HH RA SF 20110327162502 20110327162510.
h5</value>
</property>
<property name="OUTPUT">
<value>20130327.raw</value>
</property>
</component>
<component name="slave">
<property name="HDF5">
<value>data/CSKS4 RAW B HI 08 HH RA FF 20110311162513 20110311162521.
h5</value>
</property>
<property name="OUTPUT">
<value>20130311.raw</value>
</property>
</component>
</component>
</insarApp>

Sometimes it is convenient to process only the beginning portion of data set the first time
through to get a feel for the data - examine its correlation and fringe quality, check the focus of
the image, etc. There are several ways to accomplish this; we saw in Lab 3 that the number of
patches can be set in the input file directly. But suppose we don’t want to or do not have
permission to alter the input file, or we want to apply the same parameter modifications to a
number of interferogram processing runs. We can take advantage of component configurability
to accomplish the same thing.

The ISCE architecture has mechanisms to allow each parameter in a workflow component in
insarApp.py to be configurable. This feature was added recently so not all components are
yet configurable, but certain key components are. The image formation component, known as
formslc, is one such configurable component. formslc is a patch-based focusing system,
performing convolution through FFT-based circular convolution one chunk of pulses at a time.
This is the module where specifying a single patch for quick examination takes place. To set
parameters specific to forms1c in a configuration file, we create a file called formslc.xml
and place it in the directory where we are running insarApp.py. In this case, formsic is the
family name of the what would be a possible set of image formation modules. Thus the name
formslcin formslc.xml refers to the family name. Let’s set the parameter for the number of
patches, called NUMBER PATCHES, to 1in formslc.xml:

> cat > formslc.xml
<dummy>
<component name="formslc">
<property name="NUMBER PATCHES">1</property>
</component>
</dummy>

Press Ctrl-D to exit cat

For configuration files, the bounding xml construct we’ve seen before in insar.xml is not
needed, so we see above the use of <dummy>. This could be any string.

Now let’s run one patch, with formslc.xml presentin the current working directory.
> insarApp.py insar 130327 130311.xml --steps

After waiting a while, you will find that the run ends in an error at the end of a long traceback:

"/Users/parosen/Applications/Installs/isce py33/isce/components/isceobj/Util/EstimateOffsets.p
y", line 347, in checkImagelLimits

raise ValueError ('Too small a reference image in the height direction')
ValueError: Too small a reference image in the height direction

Is there some fundamental problem with the data set? Typically at this point, it is good to look

at the images (slcs) to see if there is an issue.

> mdx.py *.slc

shows something interesting. If you zoom out by a factor of 4, then scroll to the bottom left, then
click on C8-Mag left most button, you see the amplitude of the master image, as follows.

% 20130311.slc, 20130327.slc, 20130327.slc

Application Display Set Zoom Select Print Tools Helpl

Z00H; -dx
: i

If you do the same but click on the other C8-Mag button, you see the amplitude of the slave
image.

%\ 20130311.slc, 20130327.slc, 20130327.slc
fpplication Display Set Zoom Select Print Tools Help

Z00M; —4x

| | |

These images look similarly non-descript except for a small feature in the bottom left corner of
the master image. This is a piece of land from Hawaii, and the rest of the image is just water.
So in this particular case, processing 1 patch was not particularly useful because most of the
image is water in this area, and clearly the ability to estimate offsets, both between images and
between interferogram and topography, is compromised with only a patch of ocean coverage.
So we should really try more patches.

5. Running more patches of data using component
configurability

Let’s just try 2. Modify formslc.xml to set NUMBER PATCHES to 2 and run it again.

> insarApp.py insar 130327 130311.xml --start=formslc

File
"/Users/parosen/Applications/Installs/isce py33/isce/components/isceobj/InsarProc/runOffoutlie
rs.py", line 60, in runOffoutliers

raise Exception('Offset estimation Failed.')

Exception: Offset estimation Failed.

We've failed again, with a different error message! What could have gone wrong this time?

> mdx.py *.slc

This time, zoom out by a factor of 10 and stretch the window to be able to see the entire
processed region. (If your screen is too small to do this, try zooming out even more until it fits.)
The master looks as follows:

X 20130311.5kc, 20130327.5kc, 20130327 sc
Aplication Disple Set Toon Select Frint Tosls Fols

Zwr it

And the slave as so:

N 20130311.5k, 20130327.5kc, 20130327k
foplication isplo ot Toom Select Print Tools Fole

ki

The bright region in the lower left is land, The other brightness features are water backscatter
which varies from time to time and does not correlate. So clearly in this case, there are not
enough points of common correlation over land to estimate the alignment of the data, so the
offset estimation failed.

This is a piece of land from Hawaii, and the rest of the image is just water. So in this particular
case, processing 1 patch was not particularly useful because most of the image is water in this
area, and clearly the ability to estimate offsets, both between images and between
interferogram and topography, is compromised with only a patch of ocean coverage. So we
should really try more patches.

So how do we get this to work better? It looks like the data are good, but we are confounded by
geography relative to our rectangular window into the world dictated by the radar imaging
process. One option is to process more patches to get more land. Another is move the starting
location to process the data. Another yet is to increase the size of each patch to cover more
real estate with each step.

6. Running with a larger patch size using component
configurability

Let’s try the last option, specifying 1 patch but a larger patch size. The default setting for patch
size saves 2048 pulses (look at the mdx window and scroll to the bottom, then click on a pixel to
see how many lines there are in the file, or look at the metadata for the slc. For 2 patches, the
slc’s are 4096 lines, so each patch is 2048 lines). Let’s try a patch size of 8192 pulses
formslc.xml should now look like:

<dummy>
<component name="formslc">
<property name="NUMBER PATCHES">1</property>
<property name="AZIMUTH PATCH SIZE">8192</property>
</component>
</dummy>

We’ve increased the size of the patch by a factor of 4, so we should see more land. Indeed,
looking at the slics, we see for the master:

X| 20130311.slc, 20130327 slc, 20130327.slc

fpplication Display GSet Zoom Select FPrint Toals Help

Z00H:-16x

and for the slave:

X/ 20130311.slc, 20130327 :slc, 20130327.slc

Fpplication Display Set Zoom Select Print Tools Help

Z00H:-16x

Note also that the run processed all the way through to the end, as evidenced by the screen
output:

runGeocode - Outputs

runGeocode.outputs.LATITUDE_ SPACING = -0.0002777777777777778
runGeocode.outputs.GEO_WIDTH = 1770

runGeocode.outputs.MAXIMUM GEO_ LATITUDE = 19.130277777777778
runGeocode.outputs.MINIMUM GEO LATITUDE = 19.343333333333334
runGeocode.outputs.LONGITUDE SPACING = 0.0002777777777777778

runGeocode.outputs.MAXIMUM GEO LONGITUDE = -154.92333333333332
runGeocode.outputs.GEO_LENGTH = 768
runGeocode.outputs.MINIMUM GEO LONGITUDE = -155.41472222222222

FHA AR AR AR AR AR R R R R R
#H#HSH
2014-07-28 12:26:34,690 - isce.insar - INFO - Total Time: 214 seconds

It is instructive to look at the final decoded interferogram £ilt topophase.flat.geo.

This is a geocoded interferogram with the topography removed and a smoothing filter applied to
reduce the phase noise. Even with a fairly narrow sliver of land, the end-to-end processing
works quite well, as seen in this screen shot of this image

> mdx.py filt topophase.flat.geo

fpplication Disploy Seb Zoom Select Print Tools

Encouraged by this, we can process the entire image by deleting the formslc.xml entirely,
or if we want to keep the larger azimuth patch (which is more efficient in general), we can just
delete the NUMBER PATCHES property in the file. The result is the image below. Note the
bulls-eye around Kilauea crater and the atmosphere-related fringes in the top right over Mauna
Loa. Note also the decorrelation at X-band in COSMO-SkyMed data is high over vegetation, so
there are few fringes visible north east in the forested areas.

.| filt_topophase.flat.geo

Application Display Set Zoom Select Print Tools Help

Z00M: -2

7. Notes about component configurability

This lab has used a new sensor type - COSMO-SkyMed - to illustrate a few of the configurability
options available to users. Configurability is a potentially powerful way to control the behavior of
the workflow components. However, users should be aware of some of the limitations and
features that comes along with configurability, particularly at this early stage of development.

1. Some modules may not have not been architected to be configurable. Not all are expected to
need it, so the developers have focused on those that are most commonly configured.

2. For those that have been architected appropriately, all nominal input parameters that are
computed by the control scripts and passed into a compute module are made configurable, but
some don’t make sense to change. For example, you would not want to change the radar
wavelength under any normal circumstance (though it there are cases where it might make
sense!) or any of the other radar specific parameters.

3. Some parameters that you might want to change have interactions with other parts of the
workflow, and though you would expect them to work, they don’t. For example, in the example
above, changing the starting pulse actually does not work robustly (try it!). It does actually
process the data starting at the specified location, but things break further downstream because
other parameters were set up outside forms1c that assumed starting at the beginning. This
needs to be improved in subsequent iterations of configurability.

4. It is non-trivial to discover the names of the configurable parameters if you are not a
developer. There are a lot of them, and the developers have not yet documented them all.

5. Some parameters can be specified in the input file as well as in a configuration file. They do
not have the same names, which is confusing. This will be improved in subsequent releases.

112 CHAPTER 7. PROCESSING COSMO-SKYMED RAW DATA

CHAPTER 8

Processing From SLC: COSMO-SkyMed,
TerraSAR-X, RadarSAT-2, and others

113

1. Processing CSK from SLC

COSMO-SkyMed data are delivered either as processed imagery or as raw data. TerraSAR-X
and RadarSAT-2 (and the future ALOS-2) data are always delivered as processed imagery;
there is no possibility to process from Level 0. We saw in Lab 6 how to process CSK data from
Level 0. In this lab, we will see how to set up ISCE for the three data sets that are or can be
delivered as SLC data.

We saw in Lab 6 that the naming convention for the CSK data sets encodes all different data
levels. The HDF5 files contain all the information needed to describe the radar data, the
processing parameters of the imagery, the orbit and the geolocation of the products. Thus
setting up the input files for CSK SLC data is essentially the same as it is for CSK raw data. In
the lab7 directory, you will find two . h5 data sets and an insar.xml input file.

cd

cd data

cd lab7

cd csk

> 1s

CSKS2 SCS U HI 05 VV RD SF 20110525020512 20110525020519.h5
insarApp.xml

CSKS3 SCS U HI 05 VV RD SF 20110526020511 20110526020518.h5

vV V V V

The product type is seen to be SCS_U, which indicates SLC data (sometimes the name is
SCS_B for CSK SLCs). We have created an input file with the right elements in it for these data
to process:

> cat insarApp.xml
<insarApp>
<component name="insar">
<property name="Sensor name">
<value>COSMO_ SKYMED SLC</value>
</property>
<component name="master">
<property name="QUTPUT">20110526.slc</property>
<property
name="HDF5">CSKS3 SCS U HI 05 VV RD SF 20110526020511 20110526020518.
h5</property>
</component>
<component name="slave">
<property name="QUTPUT">20110525.slc</property>
<property

name="HDF5">CSKS2_SCS_U HI 05 VV RD SF 20110525020512 20110525020519.
h5</property>

</component>
<l--

<component name="Dem">

<catalog>/u/proj8/dev/isce regression/dem/demLat N35 N37 Lon W12l W12
0.dem.wgs84.xml</catalog>
</component>
-=>
<property name="posting">
<value>20</value>
</property>
<property name="unwrap">
<value>False</value>
</property>
<property name="unwrapper name'">
<value>snaphu mcf</value>
</property>
<property name="doppler method">
<value>useDOPCSKSLC</value>
</property>
</component>
</insarApp>

The beginning of the file should be familiar now, specifying the master and slave images. Since
we are starting with SLC images, it is less confusing to set the OUTPUT names to end in .slc
(but you can actually use .raw). The DEM specification is commented out, so ISCE will look to
the internet database of SRTM data to download a DEM. The posting and unwrap properties
should also be familiar from previous labs. What's new is the specification of the “doppler
method” property to have a value of useDOPCSKSLC. Because the imagery are already
processed, we do not have the freedom to specify the Doppler centroid for processing. For
each data type that is delivered processed, we must specify a method to interpret and utilize the
Doppler history in the imagery. If this parameter is not specified, the processing run fails
because the Doppler is unspecified. Though the .h5 files have knowledge of their Doppler
history, it is possible that the user might want to post-process the image with a different Doppler
history. Allowing a method to be specified on input enables this possibility (though it is not
implemented in insarApp.py). There is another possible value for this called useDEFAULT.
This has the same effect as useDOPCSKSLC.

Once the input is set up properly, one can run insar2App.py as usual.

> insarApp.py insarApp.xml --steps

You'll note in the screen output that the steps are the same as for raw data even though formsic
doesn’t actually form an slc.

2014-07-29 20:30:18,466 - isce.insar - INFO - ISCE VERSION = 2.0.0,
RELEASE SVN REVISION = 1544,RELEASE DATE = 20140724,

CURRENT SVN REVISION 1525:1549M

ISCE VERSION = 2.0.0, RELEASE SVN REVISION = 1544,RELEASE DATE =
20140724, CURRENT SVN REVISION = 1525:1549M

The Dem specified was not properly initialized. An SRTM Dem will be

downloaded.

Processing steps

self.step list = ['startup', 'preprocess', 'verifyDEM',
'pulsetiming', 'estimateHeights', 'mocompath', 'orbit2sch',
'updatepreprocinfo', 'formslc', 'offsetprf', 'outliersl',
'prepareresamps', 'resamp', 'resamp image', 'mocompbaseline',
'settopointl', 'topo', 'shadecpx2rg', 'rgoffset', 'rg outliers2',
'resamp only', 'settopoint2', 'correct', 'coherence', 'filter',
'unwrap', 'geocode', 'endup']

This is because insarApp.py is designed to preserve the overall interferometric flow, and
formslc for an SLC input is essentially a resampling step since the image is already formed.

Configurability and setting of input file parameters and properties is possible for data sets
starting from SLC as well. Certain parameters, for example the number of patches to process in
formslc, obviously have no meaning when starting from SLCs, and the usual caveats about
arbitrarily configuring parameters that should not be configured obtain. The final output of this
CSK data over Parkfield looks pretty noisy from atmosphere and overly-smoothed decorrelation,
but the interferogram has quite good fringe visibility because the time interval is only 1 day.

> mdx.py filt topophase.flat.geo

%/ filt_topophase.flat.geo

Application Display Set Zoom Select Print Tools Help

Z00M: -4

2. Processing TSX from SLC

The TerraSAR-X team has a similarly lengthy and descriptive file name as CSK.

S551_SAR__AAA_BBBE_CC_D_EEE_xeooeox Trooocod_yyyyyyyy Tyyyyyy.xml

f PLT':\ f f

Sat Resol Mode Pol Start End
TSXEITDX level lewvel Date/Time Date/Time

IMAGE_FF_GGG_[beam ID](.tif or .cos)

This XML file captures a directory-based hierarchy of files that support the processing, including
imagery, annotation, thumbnails, and other ancillary files. It is buried a few levels down in a
directory tree for the data. We have set up the master.xml and slave.xml files to show
you how to construct the path to the xml files.

> cd
> cd data/lab7/tsx
> cat master.xml
<component>
<property name="XML">

dims_op oc dfd2 204281662 1/TSX-1.SAR.L1B/TSX1 SAR SSC_ SM S SRA
. 20091205T042212 20091205T042220/TSX1 _SAR__SSC__ SM S SRA 20091205
T042212 20091205T042220.xml

</property>

<property name="OUTPUT">20091205.raw</property>
</component>

The top level directory is dims_op oc_dfd2 204281662 1/TSX-1.SAR.LI1B.

The next level directory is TSX-1.SAR.L1B.

The next level directory is

TSX1 SAR SsC_ SM S SRA 20091205T042212 20091205T042220.

And finally, the xml file can be found in this directory:

TSX1 SAR__ SSC SM S SRA 20091205T042212 20091205T042220.xml.

The insarApp.py input file is quite simple. It points to the master and slave catalogs, and
specifies the posting and sensor name. As with CSK, the doppler method must also be
specified, this time as useDOPTSX. It could also be useDEFAULT.

> cat insar 091205 091216.xml
<insarApp>
<component name="insar">
<property name="posting">
<value>20</value>
</property>
<property name="Sensor Name">TerraSARX</property>
<property name="doppler method">useDOPTSX</property>
<component name="master">
<catalog>20091205.xml</catalog>
</component>
<component name="slave'">
<catalog>20091216.xml</catalog>
</component>
</component>
</insarApp>

After running insarApp.py with this input file, you can display the output.

> mdx.py filt topophase.flat.geo

% filt_topophase.flat.geo

Application Dizplay Set Zoom Select Print Tools Help

Z00M: -4

3. Processing RadarSAT-2 from SLC

By now you should know the drill pretty well: the SLC input files have long and complicated
names but the data are nicely organized and self-contained, making the setup of the input files
relatively straightforward. Let’'s do the same for RadarSAT-2. The data are typically delivered in
a zipped file with the long complicated name as described here:

IRSE_DKxxxxx_PKrrrrr_ DKzzzzz FQ16_yyyymmdd_hhmmss_PP_SLC
I Sat T T T

| Beam Image Pal Prod
| Mode Date/Time level

— product.xmi
— imagery_{pol}.tif

but upon unzipping the file, two simply named files are created, product.xml and
imagery XX.tif, where XX stands for the polarization state of the radar transmitter and
receiver for this product. The xml description has a great deal of information about the nature of
the data and how it was processed. The ftif file is the imagery itself, in geotiff format.

Note in this lab, we have organized the master and slave data sets into two directories named
by date:

> cd

> cd data/lab7/rs2

> 1s 2010%*

20100402/ :

imagery HH.tif product.xml

20100707/
imagery HH.tif product.xml

which makes it easy to setup the insarApp.py input file:

> cat insarApp.xml
<insarApp>
<component name="insar">

<property name="unwrap">

<value>True</value>
</property>
<property name="doppler method">useDEFAULT</property>
<property name="Sensor Name">
<value>RADARSAT2</value>
</property>
<property name="slc offset method">ampcor</property>
<property name="posting">30</property>
<component name="master">
<property name="xml">
<value>20100707/product.xml</value>
</property>
<property name="tiff">
<value>20100707/imagery HH.tif</value>
</property>
<property name="OUTPUT">
<value>20100707.raw</value>
</property>
</component>
<component name="slave">
<property name="xml">
<value>20100402/product.xml</value>
</property>
<property name="tiff">
<value>20100402/imagery HH.tif</value>
</property>
<property name="OUTPUT">
<value>20100402.raw</value>
</property>
</component>
</component>
</insarApp>

This file follows a familiar pattern and exploits some properties that perhaps we have not seen
before, for example slc offset method, which specifies a particular component to use,
and the doppler method is now explicitly set to useDEFAULT rather than something specific
to RadarSAT-2.

After running this example,

> insarApp.py insarApp.xml

we can display the output

> mdx.py filt topophase.flat.geo

(see below). Note that unwrapping was turned on, but the output data (filt_topophase.unw.geo)
is blank, so clearly it didn’t work. This is because the default unwrapping scheme was used,
and it doesn’t work well when the middle of the scene, where the unwrapping origin is placed, is
very noisy. Moving the origin to a less noisy region would likely fix this. Can you figure out how
to do it?

Application

DNizplay

Set

Loom

filt_topophase.flat.geo

Select Print Tools

Help

Z00M: —4x

4. Running ISCE modules outside insarApp.py

New lab exercise from Piyush

> cd lab5/env/20100502 20100328/

> python3

Python 3.2.3 (default, Feb 27 2014, 21:31:18)
[GCC 4.6.3] on linux?2

Type "help", "copyright", "credits" or "license" for more
information.

enabling readline

>>> import isce

>>> import isceob]

>>> img = isceobj.createDemImage ()

>>> img.load('filt topophase.flat.geo.xml')
>>> img.length

2560

>>> img.width

2009

>>> img.renderEnviHDR ()

>>> exit

Use exit () or Ctrl-D (i.e. EOF) to exit

>>>

> more filt topophase.flat.geo.hdr

ENVI

description = {Data product generated using ISCE}
samples = 2009

lines = 2560

bands =1

header offset = 0
file type = ENVI Standard
data type = 6

interleave bip

0

coordinate system string =

{GEOGCS ["GCS_WGS_1984", DATUM["D_WGS_1984", SPHEROID

["w

GS 1984",6378137,

298.2572235631], PRIMEM["Greenwich",0],UNIT["Degree",0.01745
329

2519943311}

map info = {Geographic Lat/Lon, 1.0, 1.0, -116.09083333333334,

byte order

33.48750000000

000

4, 0.0008333333333333334, 0.0008333333333333334, WGS-84,
units=Degrees}

>

CHAPTER 9

ISCE Stack Processing for GIAnT

127

1. Stack Processing for GIANT

In the previous lab sessions, we learned to use insarApp.py to generate individual
interferograms. In this lab, we will explore the possibility of processing interferogram stacks i.e,
multiple interferograms that are co-located on a common image grid using ISCE. The process of
resampling multiple interferograms to a common grid is called “stacking”.

“Stacking” can be performed in radar image coordinates (range and azimuth axes) or in geo
coordinates (lat and lon axes). In this lab session, we demonstrate a simple stacking approach
in geo-coordinates. To generate our interferograms stacks, we will combine the following
features of ISCE that were discussed in the previous sessions:

1. Using insarApp.py with the --steps option
2. Modifying the input XML files to customize the output geocoded grid
3. Modifying the input XML files to customize the set of geocoded output products

In this lab session, we explain the various steps involved in generating stacks with ISCE. We will
not be processing any actual interferogram stacks from scratch due to space and time
restrictions, but will walk through the various steps in sequence. No advanced Python
programming skills are assumed for this tutorial. Users can implement these steps with the
scripting language of their choice - Python, bash etc. Future versions of ISCE will include an
application called isceApp.py which will automate the processing of intereferogram stacks.

2. Organizing the data

We demonstrate our approach to stack processing using an hypothetical COSMO SkyMed
dataset (Note again that we won’t be processing any real data). We organize the
COSMO-SkyMed data corresponding to our stack in the following directory structure:

lab8

| == dem (Directory for storing DEM)

| | -— demLat N36 N38 Lon W123 W1l2l.dem

| "-- demLat N36 N38 Lon W123 Wl2l.dem.xml

| == raw (Directory for storing sensor data)

| |-- 20130531 (Directory for data acquired on a particular date)
| |-— 20130616

| |-- 20130702

| |-— 20130718

| |-- 20130803

| |-— 20130819

| —-- 20130904

‘—- insar (Directory to store the processed interferograms)

Each of the date directories could again contain multiple files corresponding to consecutive
frames. The XML configuration files shown in this walk through will automatically be combine
the multiple frames to create a single raw image file. An example date directory is shown below:

20130616/

|-- CSKS1 _RAW B HI 09 HH RA SF 20130616135654 20130616135701.h5
|-- CSKS1 RAW B HI 09 HH RA SF 20130616135659 20130616135706.h5
'—- CSKS1 RAW B _HI 09 HH RA SF 20130616135704 20130616135710.h5

3. Determining viable interferogram pairs

In this section, we demonstrate the simplest method of generating the baseline plot for our stack
of acquisitions. Choose one particular date (say the earliest acquisition as reference). For our
hypothetical example, that would be “20030531”.

Step 1:

In the insar directory create directories named 20030531_date2, where date2 corresponds to all
the other acquisition dates in the stack.

Step 2:

Populate each of the INSAR pair directories with the minimal insarApp.xml and SAR catalog files
following instructions in Lab 6.

The insarApp.xml file would look like:
<insarApp>
<component name="insar">
<component name="Dem">
<catalog>../dem/demLat N36 N38 Lon W123 W12l.dem.xml</catalog>
</component>
<component name="slave">
<catalog>20130531.xml</catalog>
</component>
<property name="Sensor name">
<value>COSMO_ SKYMED</value>
</property>
<component name="master">
<catalog>20130616.xml</catalog>
</component>
</component>
</insarApp>

SAR catalog file for the 20130531 acquisition would look like:

<component name="sar">
<property name="OUTPUT">
<value>20130531.raw</value>

</property>
<property name="HDF5">
<value>['../../h5/20130531/CSKS1 RAW B HI 01 HH RD SF 20130531021035 2013
0531021042.h5',"'../../h5/20130531/CSKS1_RAW B HI 01 HH RD SF 20130531021030 201

30531021037.h5",'../../h5/20130531/CSKS1_RAW B HI 01 HH RD SF 20130531021040 20

130531021047.h5"']</value>
</property>
</component>

Step 3:

In each of the directories, run insarApp.py till the step named “preprocess”. This will add
required baseline information to the insarProc.xml in each directory.

> insarApp.py —--—-end=preprocess
> tail -n 12 insarProc.xml
</slave>
<baseline>
<horizontal baseline top>96.7928771266</horizontal baseline top>
<horizontal baseline rate>-1.73848950218e-05</horizontal baseline r
ate>
<horizontal baseline acc>8.52094426395e-11</horizontal baseline acc

>

<vertical baseline top>29.755105435</vertical baseline top>
<vertical baseline rate>8.06177637777e-07</vertical baseline rate>
<vertical baseline acc>-4.07016302367e-12</vertical baseline acc>
<perp baseline top>-64.1586857667</perp baseline top>

<perp baseline bottom>-63.4138138722</perp baseline bottom>

</baseline>
</insarProc>

Use the perpendicular baseline information and acquisition dates to determine the interferogram
pairs that you would like to process. Save the dates corresponding to the pairs that you want to
process to a text file in the parent directory (“lab8”). Clear out the “insar” directory.

Note:

ISCE is a modular toolbox, and users familiar with Python programming can directly use ISCE
modules to generate baseline plots. Use
isce/components/isceobj/InsarProc/runPreprocessor.py as a template.

4. Determine common output grid

Before processing all the viable interferograms, we need to determine the common output grid.
We will do so by processing one pair from the stack (typically a pair with short spatial and
temporal baselines). To save time, we will turn off phase unwrapping and only geocode the
wrapped interferogram. Lets say we process the pair 20130616_20130531 in the
“insar/20130616_20130531” directory.

Modify the insarApp.xml file for the chosen pair to look like this:

<insarApp>
<component name="insar">
<component name="Dem'">
<catalog>../dem/demLat N36 N38 Lon W123 W12l.dem.xml</catalo
g>
</component>
<component name="slave">
<catalog>20130531.xml</catalog>
</component>
<property name="unwrap">
<value>False</value>
</property>
<property name="geocode list">
<vaWue>[‘fi1L7Lopophase.fIaL’J</va’ue>
</property>
<property name="Sensor name">
<value>COSMO SKYMED</value>
</property>
<component name="master">
<catalog>20130616.xml</catalog>
</component>
</component>
</insarApp>

Now run insarApp.py in the example directory.
> insarApp.py —--steps

To determine the bounding box of the processed interferogram, scroll down to the end of
insarProc.xml

> tail -n 12 insarProc.xml
<outputs>
<GEO_WIDTH>3853</GEO_WIDTH>

<MAXIMUM GEO LONGITUDE>-121.649999999999 99</MAXIMUM7GE07LONGITUDE>
<MINIMUM_GEO_LONGITUDE>—122 . 72</MINIMUM_GEO_LONGITUDE>
<LATITUDE_SPACING>—O . O002777777777777778</LATITUDE_SPACING>
<GEO_LENGTH>4864</GEO_LENGTH>
<LONGITUDE_SPACING>O . O002777777777777778</LONGITUDE_SPACING>
<MAXIMUM_GEO_LATITUDE>36 . 899444444444434</MAXIMUM_GEO_LATITUDE>
<MINIMUM GEO LATITUDE>38.250277777777775</MINIMUM GEO LATITUDE>
</outputs>
</runGeocode>
</insarProc>

We now have the information needed to set up the bounding box ([South, North, West, East]) in
the insarApp.xml files. You may add a little padding around this estimated bounding box if
needed. Clear out the “insar” directory.

5. Preparing directories for interferogram generation

In this step, we will set up the directories for all viable interferograms and the insarApp.xml files
with correct values for generating stacks.

Step 1:

Create a new directory for each of the viable interferograms under the “insar” directory and
create corresponding SAR catalog XML files as well in each sub directory.

Step2:

Determine common processing parameters. Setup insarApp.xml and SAR catalog XML files
accordingly. Some of the commonly manipulated parameters for stack processing are:

Processing parameter Value Description

Doppler method useDEFAULT COSMO SkyMed metadata
includes doppler information

Unwrap method snaphu_mcf Snaphu unwrapper using the

MCF algorithm

Geocode bounding box

[36.85, 38.3, -122.75, -122.6]

SNWE determined from Step
4 above.

Geocode list

[filt_topophase.unw’,
‘phsig.cor’, ‘topophase.cor’,
‘los.rdr’]

Geocode only the files
needed by GIAnT or for
modeling.

Filter strength

0.5

Goldstein filter strength

Posting

20

Choose a posting
comparable but less than
DEM posting for best
performance.

The corresponding insarApp.xml file looks like:

<insarApp>

<component name="insar">

<property name="posting">
<value>20</value>

</property>

<property name="doppler method">

<value>useDEFAULT</value>
</property>
<property name="unwrap'">
<value>True</value>
</property>
<property name="unwrapper name'>
<value>snaphu mcf</value>
</property>
<property name="geocode bounding box">
<value>[36.85,38.3,-122.75,-122.6]</value>
</property>
<property name="geocode list">
<value>[‘filt topophase.unw’, ‘phsig.cor’,
‘topophase.cor’,’los.rdr’]</value>
</property>
<property name="filter strength”>
<value>0.5</value>
</property>
<property name="Sensor name'">
<value>COSMO_ SKYMED</value>
</property>
<component name="master">
<catalog>20130616.xml</catalog>
</component>
<component name="slave">
<catalog>20130531.xml</catalog>
</component>
<component name="Dem'">
<catalog>../../dem/demLat N36 N38 Lon W123 Wl1l21l.dem.xml</catalog>
</component>
</component>
</insarApp>

Each interferogram directory is now ready to support an independent “insarApp.py” processing
run.

Step 3:

Run “insarApp.py” in individual directories and the output geocoded products are ready to be
directly ingested into GIANnT. The presented approach has following advantages:

1. Allows for customized processing of individual interferograms. Each interferogram
processing is localized to a single directory. Add all configuration XML files to the
processing directory. Can modify individual insarApp.xml files.

2. Independent processing of interferograms. Once the structure of the input XML files are
known, interferograms can be processed independently on different machines /
networks/ cloud instances.

136 CHAPTER 9. ISCE STACK PROCESSING FOR GIANT

CHAPTER 10

Working with GIAnT

137

1. Intro - Preparing the stack for analysis

Note: Execute all the commands in this lab session on a terminal in the Guacamole interface.

GIANT is designed to work with outputs from multiple SAR/INSAR processors -e.g, ISCE,
ROI_PAC etc. The very first stage of processing with GIAnT transforms INnSAR products from
their native formats (e.g, GMTSAR’s grd files, ISCE”s binary files etc) to an internally consistent
Hierarchical Data Format 5 (HDF5) format.

In this tutorial, we will describe the steps involved in transforming all the input data (described in
the previous tutorial) into a HDF5 format needed by GIAnT. Again, we start with our test dataset
located in the directory “synthetic”:

> cd /home/ubuntu/data/giant/kilaeau/GIAnT
> 1s
example.xml 1ifg.list prepdataxml.py prepsbasxml.py userfn.py

From amongst the various python scripts in the directory - “userfn.py” and “prepdataxml.py” are
needed for preparing our data stack for analysis. The other python scripts are related to the
actual time-series analysis and will be discussed in later tutorials.

2. userfn.py - Translating pair information to actual files on disk

As described in the previous tutorial, “ifg.list” is a four column text file that describes our
interferogram network in a simple fashion.

> less ifg.list

20110310 20101212 -90.8372435038 CSK
20110322 20101220 -53.7819100954 CSK
20110407 20110326 183.599267061 CSK
20101228 20101220 -259.347791029 CSK
20110322 20110318 -112.975218835 CSK

We also mentioned that we stored our unwrapped phase and coherence files in individual
sub-directories in a directory named “insar”. But we never provided the exact mapping between
each line of “ifg.list” and the corresponding files in “insar”. This is accomplished through
userfn.py .

>less userfn.py
def makefnames (datesl, dates2, sensor):

dirname = '../insar'

root = os.path.join(dirname, datesl+' '+dates2)
iname = os.path.join(root, 'filt topophase.unw.geo')
cname = os.path.join(root, 'topophase.cor.geo')

return iname, cname

“userfn.py” should define a function named “makefnames” that takes the the master date, slave
date and sensor name as inputs and returns two strings that represent the path to the
unwrapped phase file and the coherence file. “userfn.py” should be located in your working
directory.

This particular mechanism was devised to allow users to store INSAR outputs using their
preferred directory and file name structure. Note that “userfn.py” should be considered as an
user input, and each stack should be accompanied by its own “userfn.py”.

3. “prepdataxml.py” - setting up data characteristics.

“prepdataxml.py” is responsible for generating the input file “data.xml” which describes the
characteristics of the dataset like dimensions, looks, formats etc.

> less prepdataxml.py
#!/usr/bin/env python

import tsinsar as ts
import argparse
import numpy as np

if name

== "' main_ ':

######Prepare the data.xml

g = ts.TSXML('data')

g.prepare data xml ('example.xml', proc='ISCE',
x1im=[0,2118], ylim=[0, 1920],
rxlim = [1395,1405], rylim=[1420,1430],
latfile="'"', lonfile='"'"', hgtfile='",
inc = 21., cohth=0.1, chgendian='False',
unwfmt="'RMG', corfmt='RMG')

g.writexml ('data.xml')

We set up some basic parameters for processing our stack using “prepdataxml.py”. The
complete list of all configurable parameters can be found in the GIAnT user manual. We
describe the parameters that we have set up using prepdataxml.py below:

example.xml Example ISCE insarProc.xml file with dimensions and
wavelength information

proc Default is RPAC. We set it to ‘ISCE’

xlim X limits for cropping the image (Python convention). We use
the full image here.

ylim Y limits for cropping the image (Python convention). We use
the full image here.

rxlim X limits of reference region. Pixel 30-49 in range. (zero
index)

rylim Y limits of referenec region. Line 50-69 in azimuth. (zero

index)

latfile, lonfile, hgtfile

Files for lat, lon, height in radar coordinates. This
information is needed for atmospheric corrections,
which are currently not used. These are described in
the tutorial on advanced topics.

inc Incidence angle (constant or file). Again only use for
atmospheric corrections and GPS comparison. Not
used in this tutorial.

cohth Coherence threshold. All phase measurements with
coherence less than this value are considered
invalid.

chgendian To the input files are in a different format than the native
machine format.

unwfmt FLT/RMG to indicate that the input is one or two channel
file.

corfmt FLT/RMG to indicate that the input is one or two channel

file.

The default data type for all files is float32. See GIAnT user manual for complete list of options

and default values.

We will then generate our “data.xml” script as follows:

> python prepdataxml.py

To view the generated “data.xml” file,

> less data.xml

<data>
<proc>

<value>ISCE</value>
<type>STR</type>

<help>Processor used for generating the interferograms.</help>

</proc>
<master>
<width>

<value>2118</value>
<type>INT</type>

<help>WIDTH of the IFGs to be read in.</help>

</width>
<file length>

<value>1920</value>

<type>INT</type>

<help>FILE LENGTH of the IFGS to be read in.</help>
</file length>
<wavelength>

<value>0.0312283810417</value>

<type>FLOAT</type>

<help>WAVELENGTH of the Stack. If combining sensors,ensure that

they are all converted to same units.</help>

</wavelength>

Note that the generated XML file can be modified in a text editor, and we include a help string to
describe each of the parameters in the file.

We are now ready to gather data into a HDF5 file readable by GIANT.

4. PreplgramStack.py - preparing the stack

From the GIANnT working directory, execute PreplgramStack.py.

(NOTE: The PreplgramStack.py command and many of the rest in this lab need to be run from
the X11 windows in the Remote Desktop function of EarthKit.)

> cd /home/ubuntu/data/giant/kilaeau/GIAnT

> PrepIgramStack.py

<module> - INFO - No common mask defined

<module> - INFO - Output hb5file: Stack/RAW-STACK.h5

<module> - INFO - PNG preview dir: Figs/Igrams

<module> - INFO - Deleting previous Stack/RAW-STACK.hb5

<module> - INFO - Reading in IFGs

[========================= 59% =>] 134s / 93s

As indicated by the screen output, the program generates a file named “Stack/RAW-STACK.h5”
in the Stack directory and another directory called “Figs/Igrams”.

> 1s
data.xml Figs prepdataxml.py Stack userfn.pyc
example.xml 1ifg.list ©prepsbasxml.py userfn.py

> 1s Stack
RAW-STACK.hb5

> 1ls Figs
Igrams

> 1ls Figs/Igrams

I001-20110310-20101212-CSK.png I1024-20110404-20110214-CSK.png
I002-20110322-20101220-CSK.png 1025-20110302-20101228-CSK.png
I003-20110407-20110326-CSK.png I1026-20110404-20110403-CSK.png
I004-20101228-20101220-CSK.png I1027-20110129-20101228-CSK.png

HDF5 outputs of all GIANT programs are stored in the “Stack” directory and associated PNG
previews are generated in a directory named “Figs”.

5. PNG previews - What does our data look like?

The directory Figs/Igrams contains PNG previews of all unwrapped interferograms listed in
ifg.list . The PNG files are numbered in sequence. The PNG preview corresponding to the 80th
interferogram in our test data set.

To preview the PNG files, run the following command: (NOTE: you will need to run this image
preview command from the Remote Desktop as it is graphical in nature)

> cd Figs/Igrams

> eog *.png

Notice that a coherence threshold has been applied to the interferograms depending on the
user inputs in data.xml. The unwrapped phase has been converted to mm at this stage.

Unw phase Mask

640

1280

706 1412 2118 0 706 1412 2118 &9

1920
0

6. Listing contents of RAW-STACK.h5

In this section, we will try to understand the structure of the HDF5 file Stack/RAW-STACK.h5
created by “PreplgramStack.py”. We can summarize the contents of this file using h51s

>cd ../..

> h51s Stack/RAW-STACK.hb5

Jmat Dataset {46, 17}

bperp Dataset {46}

cmask Dataset {1920, 2118}
dates Dataset {17}

igram Dataset {46, 1920, 2118}
tims Dataset {17}

usat Dataset {17}

This lists the various arrays stored in the HDF5 file and their corresponding sizes.
The details on a particular variable, say Jmat, can be obtained using h5dump

> h5dump -a /Jmat/help Stack/RAW-STACK.h5
HDF5 "RAW-STACK.hb5" {
ATTRIBUTE "/Jmat/help" {
DATATYPE HOT STRING ({
STRSIZE 28;
STRPAD HS5T STR NULLPAD;
CSET H5T CSET ASCII;
CTYPE HS5T C_S1;
}
DATASPACE SCALAR
DATA {
(0): "Connectivity matrix [-1,1,0]"

}

Every HDF5 dataset created by GIANnT includes a self-explanatory “help” attribute which is listed
in the “Data{}” section of the output from the h5dump command.

RAW-STACK.h5 has all the data we need to proceed to the next stage of time-series
processing, stored in a convenient and easily accessible format.

1. Quick recap

So far, we have gathered all the required network, unwrapped phase and coherence information

into a HDF5 file using “PreplgramStack.py” in the previous tutorial.

> cd /home/ubuntu/data/giant/kilaeau/GIAnT

> h51s Stack/RAW-STACK.hb5

Jmat
bperp
cmask
dates
igram
tims
usat

Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset

{46, 17}

{46}

{1920, 2118}
{17}

{46, 1920, 2118}
{17}

{17}

In this tutorial, we will apply optional corrections to the ingested stack and estimate the
deformation time-series using the SBAS technique. We will also teach users to interactively
visualize some of the time-series results.

2. Setting up the processing parameters

In the previous tutorial, we described how the dataset parameters are controlled using
“data.xml”. In this tutorial, we will learn to set up the processing parameters using a similar XML
file - “sbas.xml”. This processing file is specific for the SBAS set of time-series inversions (See
figure below).

GIANT overview

PreplgramStack.py

ProcessStack.py

GPS data

Unwrapped
IFGs
Weather
models

MInTS chain
SBAS chain
DatatoWavelet.py

SN\t oy InvertWaveletCoeffs.py

(or)
InvertWaveletCoeffs_fol
ds.py

(or)
NSBASInvert.py
(or)
Timefninvert.py

WavelettoData.py

Visualization

In the example dataset directory, you will find a script named “prepsbasxml.py” .

> less prepsbasxml.py
#!/usr/bin/env python

import tsinsar as ts
import argparse
import numpy as np

if name

== "' main_ ':

g = ts.TSXML('params')
g. prepare sbas xml(nvalid
demerr = False, f£ilt=0.05)

30, netramp=True, atmos='",

g.writexml ('sbas.xml')

The complete list of all configurable parameters in “sbas.xml” can be found in the GIANT user
manual. We describe the parameters that we have set up using prepsbasxml.py below:

nvalid

Used for NSBAS inversion. Determines the minimum
number of interferograms that a pixel should be
coherent to be considered for inversion.

netramp

Boolean parameter controlling the deramping of
interferograms. In this case, the applied ramp
corrections are consistent over the entire network.

atmos

ProcessStack.py can download weather model data and
use that for stratified trophospheric phase delay
correction. This is beyond the scope of this tutorial.
We use a empty string to indicate that no weather
model corrections are to be applied.

demerr

Boolean parameter indicating if a DEM error term needs to
be estimated. The baseline information from ifg.list
is used for DEM error estimation.

filt

Width of the Gaussian filter to applied to the raw time-series
to obtain the smoothed estimates. The value of this
parameter is in years.

See GIANT user manual for complete list of options and default values.

> python prepsbasxml.py

To view the generated “sbas.xml” file,

> less sbas.xml
<params>
<proc>
<nvalid>
<value>30</value>
<type>INT</type>

<help>Minimum number of coherent IFGs for a single pixel. If
zero, pixel should be coherent in all IFGs.</help>

</nvalid>
<uwcheck>

<value>False</value>

<type>BOOL<L/type>
</uwcheck>

<netramp>
<value>True</value>
<type>BOOL<L/type>
<help>Network deramp. Remove ramps from IFGs in a network
sense.</help>
</netramp>
<gpsramp>
<value>False</value>
<type>BOOL</type>
<help>GPS deramping. Use GPS network information to correct
ramps.</help>
</gpsramp>
<stnlist>
<value></value>
<type>STR</type>
<help>Station list for position of GPS stations.</help>
</stnlist>

</params>

Remember that the generated XML file can be modified in a text editor, and we again include a
help string to describe each of the parameters in the file.

We are now ready to process our stack from the HDF5 file.

3. ProcessStack.py - Applying corrections

The first stage of processing, in which the data supplied by the users is modified, is
accomplished using “ProcessStack.py”. The aim of this step is to
1. Correct for stratified troposphere artifacts, either
a. Empirically by looking at relationship between INSAR phase and DEM
b. Using weather models through the PyAPS package
2. Estimate ramps introduced due to orbital errors, either
a. Either empirically by fitting a predefined orbit error function to data
b. Using dense GPS observations

All the corrections are applied consistently across the interferogram network.

For this tutorial, we only choose to empirically deramping of interferograms. Details regarding
other options and the associated fields in “sbas.xml” can be found in the GIAnT user manual.

Run “ProcessStack.py”

(NOTE: The ProcessStack.py command needs to be run from the X11 windows in the Remote
Desktop function of EarthKit.)

> pwd
/home/ubuntu/data/giant/kilaeau/GIAnT

> ProcessStack.py

logger - INFO - GIANT Toolbox - v 1.0

logger - INFO - -———==———————————————

<module> - INFO - Input h5file: Stack/RAW-STACK.h5
<module> - INFO - Deleting previous Stack/PROC-STACK.hb5
<module> - INFO - Output hb5file: Stack/PROC-STACK.h5
deramp - INFO - PROGRESS: Estimating individual ramps.

[====================== 98% ===================>] 17s / Os
deramp - INFO - PROGRESS: Network deramp of IFGs.
[====================== 98% ===================>] 27s / Os
<module> - INFO - PNG preview of Deramped images: Figs/Ramp

[======> 11%] 42s / 342s

Outputs of “ProcessStack.py” include - a processed stack file “Stack/PROC-STACK.h5” and a
directory of PNG previews of deramped interferograms “Figs/Ramp”.

> 1ls Stack
PROC-STACK.h5 RAW-STACK.hb5

To preview the contents of the new stack file
>h51s Stack/PROC-STACK.h5

Jmat Dataset {46, 17}

bperp Dataset {46}

cmask Dataset {1920, 2118}
dates Dataset {17}

figram Dataset {46, 1920, 2118}
ramp Dataset {46, 3}

tims Dataset {17}

To view the contents of the directory with the PNG previews.

> ls Figs/Ramp

I00l.png I007.png I013.png I019.png I025.png I03l.png I037.png
I043.png

I002.png 1I008.png I01l4.png I020.png I026.png I032.png I1038.png
I044.png

To see the effect of deramping on the 7th interferogram in the Stack: (NOTE: you need to run
this from Remote Desktop for the graphical viewer)

> eog Figs/Ramp/I007.png

Original Deramped
0 ' ' 400 ' ' 400
300 300
&gl | {4200 200
100 100
Q'ﬁ; 0 “:,' 0
1280+ 114 -100 -100
-200 _ -200
s —-300 - -300
1920 ' ' : ' : ~
0 706 1412 2118 0 706 1412 2118

Our stack is now deramped and ready for the final time-series inversion.

4. NSBASInvert.py - Final inversion

In this tutorial, we demonstrate the simplest time-series inversion algorithm implemented in
GIANT - the NSBAS algorithm. GIAnT also implements two other algorithms in the SBAS chain -
SBASInvert.py and Timefninvert.py. The detailed discussion on the differences between these
approaches can be found in the GIANT user manual.

The NSBAS algorithm estimates the differential displacement between one SAR acquisition and
the next using a simple least squares approach. Optionally, it uses a user-defined temporal form
to connect disconnected components of an interferogram network. By default, NSBAS uses a
quadratic polynomial for connecting disconnected components. Our implementation of the
algorithm estimates the time-series only for the pixels that are considered coherent over atleast
“nvalid” interferograms in the entire stack.

> NSBASInvert.py -nproc 4

logger - INFO - GIANT Toolbox - v 1.0

logger - INFO - ———————————=—————————-—

Timefn - INFO - Adding 17 linear pieces (SBAS)

<module> - INFO - No modification in the NSBAS constraint functional
form
<module> - INFO - Assuming a quadratic polynomial form

Timefn - INFO - Adding order 0 at T 0.000000

Timefn - INFO - Adding order 1 at T = 0.000000

Timefn - INFO - Adding order 2 at T = 0.000000
<module> - INFO - Output h5file Stack/NSBAS-PARAMS.h5
<module> - INFO - Number of parallel processes: 4

<module> - INFO - Relative weight of polynomial constraint
1.000000e-04
[====================== 90% ===================>] 800s / Os

This script has been parallelized for performance, and “-nproc 4” on the command line
instructions the program to launch the analysis on 4 threads.

“NSBASInvert.py” stores the inversion results in “Stack/NSBAS-PARAMS.h5”.

> h51s Stack/NSBAS-PARAMS.h5

bperp Dataset {46}

cmask Dataset {1920, 2118}
dates Dataset {17}

gamma Dataset {SCALAR}
ifgcent Dataset {1920, 2118}

mName Dataset {3}

masterind Dataset {SCALAR}

parms Dataset {1920, 2118, 3}
rawts Dataset {17, 1920, 2118}
recons Dataset {17, 1920, 2118}
regF Dataset {3}
tims Dataset {17}

Note that the HDF5 file contains the raw time-series estimates (rawts) as well as the filtered
time-series estimates (recons). In the next couple of sections, we will describe the visualization
tools that are included with GIANT.

5. plotts.py - Interactive visualization

GIANT includes a script called “plotts.py” for interactive visualization of the generated
time-series products. “plotts.py” requires a graphical desktop to run. It also requires that you set
the matplotlib environment for an X-windows environment. To set matplotlib to run successfully
in X-windows, edit this file:

> nano ~/.matplotlib/matplotlibrc
and set this value:
backend : TkAgg

Now we are ready to run “plotts.py”. Running the script the “-h” option list all the input
parameters that can be controlled from command line.

> plotts.py -h
logger - INFO - GIANT Toolbox - v 1.0
logger - INFO - —-—-———=—=—————————————
usage: plotts.py [-h] [-e] [-f FNAME] [-i TIND] [-m MULT] [-y YLIM
YLIM]
[-ms MSIZE] [-raw] [-model] [-mask MASK MASK] [-zf]

Interactive SBAS time-series viewer

optional arguments:

-h, —--help show this help message and exit

-e Display error bars if available. Default: False

-f FNAME Filename to use. Default: Stack/LS-PARAMS.h5

-i TIND Slice to display. Default: Middle index

-m MULT Scaling factor. Default: 0.1 for mm to cm

-y YLIM YLIM Y Limits for plotting. Default: [-25,25]

-ms MSIZE Marker size. Reduce 1f error bars are too small.
Default: 5

-raw Plot Un-Filtered Time Series as well, if available

-model Plot the individual model components as well. For

NSBAS, Timefn and MInTS.
-mask MASK MASK To mask out values. Need to provide 2 inputs -
Mask file in
float and xml file with dimensions. Default: None
-zf Changes time-origin to first acquisition for

showing time-
series.

To visualize the output from “NSBASInvert.py”,

> plotts.py -f Stack/NSBAS-PARAMS.h5 -y -5 30 -raw

This will open two plot windows - an interactive time-slice viewer and a pixel time-series viewer
as shown below. The colorbar for the slice viewer ranges from -5 to 30 cm, and the raw

time-series (red dots) is also shown along with the filtered time-series (blue); as requested using
the command line flags -y and -raw.

Time-slice viewer Pixel time-series viewer
ann LG D
8 Time = Mar03-2011 » Ling = 1120, Pix = 1730

101135 201130

Current pixel location
(Click on image on left to

Interactive time bar in years
[click to change plot) Time-series of current pixel
{red-raw, blue-filtered) change)

Users can now view different time-slices by clicking on the time-bar and can view the
time-series for different pixels by directly clicking on the pixel of interest in the image.

Some observations:

1. Our analysis clearly captures the large offset associated with the Mar 6, 2011 dike
injection on Kilauea volcano East Rift zone.

2. GIANnT implements a simple Gaussian weighted moving average filter. Hence, the
discrepancy between the raw displacement observations (red pixels) and the filtered
observations (blue pixels).

3. Users can implement their own custom filtering with the raw time-series included in the
HDF5 file.

Besides plotts.py, GIAnT can also export results as a movie through the “make_movie.py” script
and as a Google Earth ready KML using “make_kml.py” scripts. For details and usage, refer to
the GIANnT user manual. GIAnT also includes tools to export these datasets into GMT’s netcdf

format and a GDAL compatible VRT.

158 CHAPTER 10. WORKING WITH GIANT

CHAPTER 11

Hands On Lab On Polarimetric UAVSAR Data

Processing for Land-cover Land-use Change
Applications

159

1. Welcome

Welcome to the Hands-on Lab on Polarimetric UAVSAR Data Processing for Land Cover /
Land Use Change Applications. Synthetic aperture radar (SAR) is a powerful tool for mapping
and monitoring the characteristics of terrestrial landscapes. SAR polarimetry allows us to extract
additional information from SAR data as compared to conventional radar backscatter, by
separating the scattering mechanisms mixed in the radar return.

The purpose of this tutorial is to introduce basic polarimetric tools that can be used in the
context of land cover / land use applications. In the next sessions we will walk you through the
steps to:
(1) Obtain the necessary inputs to perform polarimetric analyses with UAVSAR GRD
products.
(2) Familiarize yourself with polarimetric decompositions and classification techniques.
(3) Apply free, open source software package PolSARPro to analyze a forest fire dataset.
(4) Understand the advantages, challenges and limitations of working with airborne SAR
datasets.

Let’s get started and learn more about the data and software used in this practice.

2. The PolSARPro Tool

PolSARPro is a freely available, open-source software package funded by the European Space
Agency (ESA) to process polarimetric radar data (http://earth.eo.esa.int/polsarpro/). Although
PolSARPro has a basic graphical interface, in this tutorial we will call its tools from the linux
command line, which is a highly flexible and scalable approach to process UAVSAR data. We
will use the PoISARPro version currently available on the web (v4). A new version of PoISARPro
(v5) is being developed by ESA and will be distributed in the near future.

Note:
-> Commands are case sensitive.
=> All relevant commands are preceded by numbers in square brackets (e.g. [23]) and can
be copied and pasted into your terminal.
-> Steps to be typed into the Remote Desktop are followed by “RD” (e.g. [23-RD])
- Steps in blue color are short “do it yourself’ assignments.

PolSARPro routines are located in this directory:
/home/ubuntu/install/polsarpro/Soft

And PDFs with detailed instructions for each routine are here:
/home/ubuntu/install/polsarpro/TechDoc/C Routines

For this tutorial, all PoISARPro routines are available in your current path. To see a function’s
usage, just type its name with no arguments.

For example, if you type:

[1] UTM LatLong.exe

You should see:

> A processing error occured !

> UTM LatLong x coord y coord UTM zone

The error message can be disregarded as it is just telling us we are calling the routine with no
input parameters.

The function UTM LatLong is run by typing its name followed by its 3 arguments separated by
spaces: the UTM Easting, UTM Northing, and the UTM zone. Type:

[2] UTM LatLong.exe 500000 0 23

You should see:

> longitude = -45.000000 latitude = 0.000000

More detailed documentation can be found in the Documentation files.

Next, we will go over a few basic commands as we review the input files for this exercise.

3. Input Files

In the first exercise we will compare pre-fire and post-fire polarimetric UAVSAR images acquired
for the 2009 Station Fire (CA). The input UAVSAR data are located in
/home/ubuntu/data/labl0/fire. Type cd to move to the data directory.

[3] cd /home/ubuntu/data/labl0/fire

At any time, use the command pwd to see your current directory.
[4] pwd
> home/ubuntu/data/labl0/fire

Use the command 1s to list the files in a directory.
[5] 1s

As you can see, the fire directory contains 2 directories corresponding to 2 UAVSAR flights:
flight_09010 (pre fire: February 26, 2009) and flight_09072 (post fire: September 18, 2009). The
other directories will be used to store outputs.

See the files available for the pre-fire flight:
[6] cd flight 09010

[7] 1s
Go up one directory
[8] cd ../

Take a look at the post-fire files
[9] 1s flight 09072

Each flight directory contains:
(Six ground-projected, polarimetric data files (*.grd).
[d One file containing the local incidence angle in radians for each image pixel (*.inc). We'll
use this file to mask out severe topography.
[d One text file containing metadata information such as image dimensions, resolution, and
geographic information (*.ann).
More details on file formats:
http://uavsar.jpl.nasa.gov/science/documents/polsar-format.html

In the next page we will see how to read these files within PoISARPro.

The transparent green rectangle represents the area imaged by UAVSAR (297 km long),
whereas polygons show the fire progression between August 29 2009 and Sept 01 2009.

“wfe
e - B
Lan(alsl.er

{Santa Clarita

xnard 3
SThousand Oaks

1Hand {fos Angeles SBomona:
slan

‘Riversidel
o, 5

4. Importing, Cropping, and Multi-looking UAVSAR GRD Images

We will now import the polarimetric UAVSAR GRD images in PoISARPro. As we are interested
in a limited region (ROI) around the fire, we will crop the images and also take looks to reduce
speckle noise. Importing, cropping and multi-looking can be done in PolSARPro with a single
rouﬁne,uavsar_convert_grd_MLK_T3.exe

Let’s look at the routine’s usage by typing
[10] uavsar convert grd MLK T3.exe

The arguments are:
HeaderFile =UAVSAR annotation file (*.ann)
in dir = Input directory
out dir = Output directory
Off 1ig = Offset rows
0ff col = Offset columns
Nligfin = Number of rows in user-defined ROI
Ncolfin = Number of columns in user-defined ROI
Nlook col = Multilook factor for columns
Nlook lig = Multilook factor for rows

Two directories have been already created to save the outputs for this step:
/home/ubuntu/data/labl0/fire/output 09010/T3
/home/ubuntu/data/labl0/fire/output 09072/T3

The command below imports, crops and multi-looks the pre-fire images.

[11] cd /home/ubuntu/data/labl0/fire

[12] vavsar convert grd MLK T3.exe flight 09010/*ann flight 09010
output 09010/T3 2500 21000 1800 4000 2 2

This means that starting at pixel position (2500, 21000), we define an area that is 1800 rows x
4000 columns and and average 2x2 pixels in 1 pixel. PoISARPro will crop all polarimetric
images contained in the input directory, provided that their names match the provided
annotation file. This includes all polarimetric bands and the local incidence angle image.

List output files by typing:

[13] 1s output 09010/T3

You should see:

> Tll.bin T12 imag.bin T12 real.bin T13 imag.bin T13 real.bin
T22.bin T23 imag.bin T23 real.bin T33.bin config.txt dem.bin

Do it yourself: call uvavsar convert grd MLK.exe once again to crop the post-fire images
from flight 09072. Use the same Region Of Interest as the example above.

The routine uavsar convert grd MLK T3.exe creates thefile config.txt aswellas 9
cropped data (*bin) files. File names reflect the convention used in the polarimetry literature.

File Description
T11.bin |[HH+VV|4/2
T22.bin |[HH-VV|?%/2
T33.bin 2*HV?

T12_real.bin T12_imag.bin Complex correlation (HH+VV)(HH-VV)*/2

T13_real.bin T13_imag.bin Complex correlation (HH+VV)HV*

T23 real.bin T23 imag.bin Complex correlation (HH-VV)HV*

The “T3” term refers to the coherency matrix used to represent polarimetric data. We could have
also used the covariance “C3” matrix.

The output file dem.bin is actually the cropped incidence angle file (this will be fixed in future
releases of PoISARPro), so let’'s rename it:

[14] cd /home/ubuntu/data/labl0/fire/output 09010/T3/

[15] mv dem.bin inc.bin

[16] cd /home/ubuntu/data/labl0/fire/output 09072/T3/

[17] mv dem.bin inc.bin

The size of the new images is recorded in the file config. txt. Type:

[18] cat /home/ubuntu/data/labl0/fire/output 09010/T3/config.txt

[19] cat /home/ubuntu/data/labl0/fire/output 09072/T3/config.txt

Make a note of the number of columns and rows (you will need them for the next steps). They
should match for the pre-fire and post-fire images.

Let’s look at the cropped backscatter images by launching the Remote Desktop interface. From
the Remote Desktop, the command below displays a false color composite HH+VV 2HV HH-VV
of the pre-fire image:

[20-RD] cd /data/lablO

[21-RD] sh mdx polsar.sh fire cropped

You can switch between pre-fire and post-fire by clicking on the mdx window tab.

T11.bin, T22.bin, T33.bin . T11.bin, T22.bin, T33.bin xterm

plications Menu q

Till.bin, T22.bin, T33.bin

Zoom Select Print Tools

cation Dizplay Set

5.Compensation for Polarimetric Orientation Angle

Now we will correct for possible polarimetric distortions induced by azimuth terrain slopes.

We start from this directory:
[22] cd /home/ubuntu/data/labl0/fire/

We already have two directories where we’ll save the corrected images:
output 09010/T3 poa
output 09072/T3 poa

Copy the config.txt file into the output T3 poa directories:
[23] cp output 09010/T3/config.txt output 09010/T3 poa
[24] cp output 09072/T3/config.txt output 09072/T3 poa

Check the usage of the orientation angle correction routine:
[25] orientation estimation T3.exe
> orientation estimation T3 in dir out dir offset 1lig offset col

sub nlig sub ncol

Apply orientation angle correction to pre-fire image:
[26] orientation estimation T3.exe output 09010/T3 output 09010/T3 poa
0 0 900 2000

Do it yourself: call orientation estimation T3.exe to apply the polarimetric orientation
angle compensation to post-fire images from flight 09072.

Go to the Remote Desktop and display the pre-fire image before and after the compensation for
azimuth distortion.
[27-RD] sh mdx polsar.sh fire poa

6.Eigenvalue-based Decomposition: H/A/Alpha Decomposition

Let’'s now apply the H/A/alpha decomposition to the cropped data. First check out the usage:
> h a alpha decomposition T3.exe

These are the input arguments:
in _dir = Inputdirectory containing the T3 matrix produced with
orientation estimation T3.exe
out dir = Output directory
Nwin = Window size in pixels
offset lig = Offset rows
offset col = Offset columns
sub_nlig = Number of rows in input images from the config.txt file
sub_ncol =Number of columns in input images from the config.txt file
alpbetdelgam = Alpha, Beta, Delta, Gamma, Lambda [1=yes, 0=n0]
lambda = Lambda component [1=yes, 0=n0]
alpha = Alpha component [1=yes, 0=n0]
entropy = Entropy estimate [1=yes, 0=n0]
anisotropy = Anisotropy [1=yes, 0=n0]
The options below refer to combinations of Entropy and Anisotropy components:
CombHA = HA [1=yes, 0=no0]
CombHImA = H(1-A) [1=yes, 0=n0]
ComblmHA = (1-H)A [1=yes, 0=n0]
ComblmH1mA = (1-H)(1-A) [1=yes, 0=n0]

Then make sure you are in the Station Fire directory:
[28] cd /home/ubuntu/data/labl0/fire/

Call the function of the H/A/alpha decomposition on the pre-fire dataset. Note that we only set
three output options to 1 in order to get the alpha, entropy, and anisotropy components.

[29] h a alpha decomposition T3.exe output 09010/T3 poa

output 09010/T3 poa 1 0 0 900 2000 0 01 1 1 00 0 O

Do it yourself: apply the H/A/Alpha decomposition to the post-fire dataset.

Go in the Remote Desktop. Let’s see what the entropy images look like. We can mask out
extreme local incidence angle values < 0.2 radians (11.5 degrees) and > 1.4 radians (80
degrees). Entropy values range between 0 and 1.

[30-RD] sh mdx polsar.sh fire entropy

Close the entropy mdx images and display the alpha angle images. What differences do you

expect to see when comparing pre and post fire conditions?
[31-RD] sh mdx polsar.sh fire alpha

Notice results are not influenced by terrain slope, although we still see geometric topographic
effects. Alpha values range between 0 deg and 90 deg:

If alpha is close to.. The dominant scattering
mechanism is..

0 deg surface

45 deg volume

90 deg double bounce

7.Model-based Decomposition: Van Zyl Decomposition

We will now run the Van Zyl polarimetric decomposition to separate the scattering contribution
from the surface, the double bounce and the volume.

Pre-fire:
[32] cd /home/ubuntu/data/labl0/fire/output 09010

[33] vanzyl 3components decomposition T3.exe T3 poa/ T3 poa/ 1 0 0 900
2000

Post-fire:

[34] cd /home/ubuntu/data/labl0/fire/output 09072

[35] vanzyl 3components decomposition T3.exe T3 poa/ T3 poa/ 1 0 0 900
2000

Instead of displaying the RGB images with mdx we compare the histograms of volume
component for the fre-fire and the post fire (values in decibels using 100 bins):

Pre-fire:

[36] cd /home/ubuntu/data/labl0/fire/output 09010/T3 poa

[37] echo $[2000*900] > npts.txt

[38] statistics histogram.exe VanZyl3 Vol.bin VanZyl3 Vol hist.txt
npts.txt float dbl0 100 1 0 O

Post-fire:

[39] cd /home/ubuntu/data/labl0/fire/output 09072/T3 poa

[40] echo $[2000*900] > npts.txt

[41] statistics histogram.exe VanZyl3 Vol.bin VanZyl3 Vol hist.txt
npts.txt float dbl0 100 1 0 O

Now let’s plot the histograms of the volume Van Zyl scattering component:
[42-RD] sh mdx_polsar.sh fire volhist

8. Polarimetric Classification

For this exercise we will use an image acquired in Monterey Bay, California. We’'ll repeat many
steps from previous sessions to make an H/A/Alpha decomposition, which will be used here as
input to a polarimetric image partitioner.

Go to data directory and create two new directories to save outputs:
[43] cd /home/ubuntu/data/labl0/monterey

Let’s read in the image and multilook it by a factor of 2. This time we’ll read the entire image
with no cropping.

[44] uavsar convert grd MLK T3.exe

input 23025/SanAnd 23025 12030 010 120521 L090 CX 03.ann input 23025/
T3 0 0 00 2 2

Compensate for polarimetric orientation angle. The values 7282 and 10033 correspond to the
number of rows and columns taken from the config.txt file. Copy the config file to the T3_poa
directory.

[45] orientation estimation T3.exe /home/ubuntu/data/labl0/monterey/T3
/home/ubuntu/data/labl0/monterey/T3 poa/ 0 0 7282 10033

[46] cp /home/ubuntu/data/labl0/monterey/T3/config.txt
/home/ubuntu/data/labl0/monterey/T3 poa

The H/A/Alpha decomposition serves as input for the classification:
[47]1h_a alpha decomposition T3.exe T3 poa T3 poa 1 0 0 7282 10033 0 0
1110000

To partition the image according to the H/Alpha plane, type:
[48]h a alpha planes classifier.exe T3 poa T3 poa 0 0 7282 10033 1 0 O
/home/ubuntu/install/polsarpro/Config/Planes H A Alpha ColorMap9.pal

This produces a binary classified image H_alpha_class.bmp containing 9 classes, and two
quicklook *bmp files: H_alpha_class.bmp and H_alpha_occurence_plane.bmp. Let's open the

two *bmp files.

[49-RD] sh mdx_polsar.sh monterey class

172CHAPTER 11. HANDS ON LAB ON POLARIMETRIC UAVSAR DATA PROCESSING FOR LAND-COVE;

CHAPTER 12

Post-Processing UAVSAR Stacks With
iIsceApp.py

173

1. Post-Processing UAVSAR Stack data with isceApp.py

In this lab, you will learn how to process UAVSAR Stack data, while learning about the ISCE
application isceApp.py. Previous labs have used the application insarApp.py to process
pairs of raw or single look complex data acquired on two different dates using spaceborne
sensors into interferograms and geocoded products. In this lab we will work with the application
isceApp.py to post-process several data sets from the same flight track acquired at different
times with the UAVSAR radar flown on an airplane. The data downloaded from the UAVSAR
website have already been processed to single look complex images by the UAVSAR team.
Post-processing includes the following steps: forming interferograms from the slc data, removing
topographic phase, filtering, unwrapping, and geocoding.

To get started change directory to the /data/lab11 directory (click the “Launch” button if you
haven’t already done so),

> cd /data/labll
Take a look at the directory contents with the “Is -I” command,

> 1ls -1

demLat N38 N39 Lon W123 Wl2l.dem.wgs84.xml

incoming -> /data/sites/Napa uavsar stack/incoming

isceApp.xml

precooked -> /data/sites/Napa uavsar stack/
SanAnd 05510 01 BC.dop -> incoming/SanAnd 05510 01 BC.dop
SanAnd 05510 12128 000 121105 LO90HH 01 BC.ann ->
incoming/SanAnd 05510 12128 000 121105 LO90HH 01 BC.ann

SanAnd 05510 12128 000 121105 LO90HH 01 BC sl 1xl.slc ->
incoming/SanAnd 05510 12128 000 121105 LO90HH 01 BC sl 1xl.slc
SanAnd 05510 13089 001 130508 L0O90HH 01 BC.ann ->
incoming/SanAnd 05510 13089 001 130508 LO90HH 01 BC.ann

SanAnd 05510 13089 001 130508 L0O90HH 01 BC sl 1xl.slc ->
incoming/SanAnd 05510 13089 001 130508 LOS0OHH 01 BC sl 1xl.slc
SanAnd 05510 13165 004 131031 LO90HH 01 BC.ann ->
incoming/SanAnd 05510 13165 004 131031 LOSOHH 01 BC.ann

SanAnd 05510 13165 004 131031 LO90HH 01 BC sl 1xl.slc ->
incoming/SanAnd 05510 14068 000 140529 LO90HH 01 BC sl 1xl.slc
SanAnd 05510 14068 000 140529 L090HH 01 BC.ann ->
incoming/SanAnd 05510 14068 000 140529 LOSOHH 01 BC.ann

SanAnd 05510 14068 000 140529 LO90HH 01 BC sl 1xl.slc

SanAnd 05510 14128 003 140829 LO90HH 01 BC.ann ->
incoming/SanAnd 05510 14128 003 140829 LO90HH 01 BC.ann

SanAnd 05510 14128 003 140829 LO90HH 01 BC sl 1xl.slc ->

incoming/SanAnd 05510 14128 003 140829 LO90HH 01 BC sl 1xl.slc

You see that we have prepared this directory with some files and some symbolic links to data.
We have provided a symbolic link named “precooked” to a directory (indicated with the ->
symbol following its name) where we have previously post-processed a stack of 12 SLCs from
the San Andreas fault in the Napa area of California. In the interest of time, in this lab we will
illustrate how to post-process these data using a short stack of only a few of those SLCs just
before and after the recent earthquake in that area. The full stack will be used in Lab 12 on
using GIANT to create a time series of the deformation. The symbolic links in the current
directory ending in .ann” and “.s1c” contain the meta data and the single look complex
data downloaded from the UAVSAR website that we will use in the current lab.

We will start the processing of these data now while going on with the tutorial exposition
because it will take a while for the data to process. You can keep an eye on the processing in
the terminal pane while continuing to read the tutorial notes in this pane of your web browser
window. If you haven’t already done so, you can start the remote desktop now to have access
to another terminal window and to display images.

To start the processing, you simply enter the following command,
> iscelApp.py

After you launch this command you should see a stream of information going to the terminal
window.

The remaining sections in this lab will explain how to understand the names of the downloaded
UAVSAR files, the input files read by ISCE when you entered the command isceapp.py, and
will lead you through exploring the data products with mdx . py.

2. Understanding UAVSAR Data Set Names

Annotation file:

SanAnd_<NNNNN>_<MMMMM>_<CCC>_<YYMMDD>_<SSS><PP>_<\/V>_ <BX>.ann

R A L R A O A

Site Flight Flight 1D Datatake Acquisition Band St€8r pal Version Baseline
Name line 1D counter date angle Corrected
Uncorrected

Single look complex image file:

SanAnd_<N..> <M...> <CCC> <YYMMDD> <SSS><PP> <\/\/> <BX> <sn> <rxa>.slc

— 1

segment looks:
number rangexazimuth

Doppler file:

SanAnd_<NNNNN=_<\W> <BX=>.dop

bttt

Site Flight Version Caseline
Name line 10 Corrected
Uncorrected

The graphic above shows the standard naming conventions for UAVSAR data files. UAVSAR
data come with a metadata file called an annotation file with extension “.ann”, a set of single
look complex files with extensions “.s1c”, and a file containing Doppler values as a function
of range location with extension . dop” .

There is one annotation file for each Flight ID or acquisition date (except in the rare case of
multiple flights on one date when only the Flight ID will be different). The SLC data are cut into
multiple along track segments within each Flight ID. In this lab we are only working with
segment 1 for each Flight ID. The annotation file for each Flight ID contains information on all of
the SLC segments. There is one Doppler file for each Flight line. The UAVSAR team
processes all SLCs in a Flight ID stack to the same Doppler and the same coordinate system
(described by the Peg point contained in the annotation files). All the SLC images in a stack are

either baseline corrected (BC) or baseline uncorrected (BU), depending on whether the residual
baseline correction was applied.

3. Understanding the ISCE xml input files for stack processing

When you issued the isceApp.py command earlier in Section 1 you may have wondered how
isceApp.py received input information on what to process and how to set processing options.
ISCE will read configuration data from appropriately named files in the local directory. For the
application, i sceApp.py the name can either be isce.xml or isceApp.xml. In fact you
could have two files using both of these names with either complimentary or conflicting
information. In the case of complimentary information the union of the information in the two
files will be used. In the case of conflicting information the information in the file named
isceApp.xml will win. Itis also possible to name an input file on the command line with any
name desired (as was done in some of the earlier labs); the file on the command line will win in
the case of conflicting information amongst the different configuration files. You can issue the
following two commands to see that we have placed a file with name isceApp.xml in the
directory, but not one with name isce.xml.

> 1s iscelApp.xml

isceApp.xml

> 1ls isce.xml

ls: cannot access isce.xml: No such file or directory

When we run isceApp.py ISCE loads the contents of the i sceApp . xml file found in the local
directory and configures the application.

Let’s look at the contents of the input file,

> cat isceApp.xml
<?xml version="1.0" encoding="UTF-8"?>

<isceApp>
<component name="isce">

<property name="sensor name">UAVSAR Stack</property>
<property name="resamp range looks"> 6</property>
<property name="resamp azimuth looks">16</property>
<property name="do unwrap">True</property>

<property name="unwrapper name">icu</property>
<property name="output directory">.</property>

<component name="stack">

<component name="Scenel">

<property name="id">uavl</property>
<property name="hh">
SanAnd 05510 09006 011 090218 LO90HH 01 BC.ann
</property>
</component>

<component name="Scenel">
<property name="id">uav2</property>
<property name="hh">
SanAnd 05510 09091 005 091117 LO90OHH 01 BC.ann
</property>
</component>

<component name="Scene3">
<property name="id">uav3</property>
<property name="hh">
SanAnd 05510 10037 009 100511 LOS90OHH 01 BC.ann
</property>
</component>

<component name="Scened">
<property name="id">uav4</property>
<property name="hh">
SanAnd 05510 10077 010 101028 LO90HH 01 BC.ann
</property>
</component>

<component name="Sceneb5">
<property name="id">uav5</property>
<property name="hh">
SanAnd 05510 11049 008 110713 LO90HH 01 BC.ann
</property>
</component>

<component name="Scene6t">
<property name="id">uavé6</property>
<property name="hh">
SanAnd 05510 11071 012 111103 LOSOHH 01 BC.ann
</property>
</component>

<component name="Scene7">
<property name="id">uav7</property>

<property name="hh">
SanAnd 05510 12017 007 120418 LO90HH 01 BC.ann
</property>
</component>

<component name="Scene8">
<property name="id">uav8</property>
<property name="hh">
SanAnd_05510 12128 000 121105 LO90HH 01 BC.ann
</property>
</component>

<component name="Scene9">
<property name="id">uav9</property>
<property name="hh">
SanAnd 05510 13089 001 130508 LOY90HH 01 BC.ann
</property>
</component>

<component name="ScenelQO">
<property name="id">uav10</property>
<property name="hh">
SanAnd 05510 13165 004 131031 LO90HH 01 BC.ann
</property>
</component>

<component name="Scenell">
<property name="id">uavll</property>
<property name="hh">
SanAnd 05510 14068 000 140529 LOS0HH 01 BC.ann
</property>
</component>

<component name="Scenel2">
<property name="id">uavl2</property>
<property name="hh">
SanAnd 05510 14128 003 140829 LO90HH 01 BC.ann
</property>
</component>
</component>

<property name="selectPols">hh</property>

<property
name="selectPairs">uavl0-uavl2,uav9/uavll,uav9/uavl2</property>

<property name="coregistration strategy">single
reference</property>
<property name="reference scene">uav9</property>
<property name="reference polarization">hh</property>

<property name="geocode list">
["filt topophase.flat", "filt topophase.unw"]
</property>

<component name="dem">
<catalog name="dem">
demLat N38 N39 Lon W123 Wl2l.dem.wgs84.xml
</catalog>
</component>

</component>
</iscelhpp>

This is an edited version of the file that was used in post-processing the data in the “precooked”
directory. The file lets isceApp.py know that the “sensor name” is UAVSAR _Stack so that the
appropriate code for handling the sensor meta data and image data will be used. It sets a few
processing options such as the number of range and azimuth looks and the name of the
unwrapper to use. Then it has a “component” section giving the names of the input annotation
files for each image in the stack. In the precooked directory we used 12 input images. In this
directory we have commented out (xml comment begins with “<!--” and ends with “-->") all of the
scenes except 9-12, the ones just before and after the recent Napa earthquake. After the
scenes list in the stack, the reference scene is selected and the pairs to be post-processed are
selected. The specification of the pairs using a “/” symbol simply means to form a single pair
from the two named scenes. So, uav9/uav11 means form an interferogram from the SLC
labelled uav9 and the SLC labelled uav11 in the definition of the stack. The “-” symbol
between two scenes is shorthand for all possible unique combinations between the first and last
scene. So, uavl0-uavl12 would expand into uav10/uavll, uavl0/uavl2,
uavll/uavl?2.

The isceApp.xml gives the name of the annotation files provided by the UAVSAR project.
The annotation file contains the names of the other inputs files used by ISCE, namely the single
look complex (SLC) file and the doppler file. The annotation file is an rdf (radar data format)
file, which is a text file consisting of lines of the form “keyword (units) = value”. Some example
lines used in ISCE from one of the annotation files in this directory follows (; starts a comment,

& indicates a string value, - indicates a dimensionless entry),

slc 1 1x1 (&)

SanAnd 05510 11071 012 111103 LOY0HH 01 BC sl 1xl.slc

dop (&) = SanAnd 05510 01 BC.dop

slc 1 1x1 Columns (pixels) = 9900 ;samples in SLC 1x1 segment 1

slc 1 1x1 Rows (pixels) = 66664 ;lines in SLC 1x1 segment 1

1x1 SLC Range Pixel Spacing (m) = 1.66551366

1x1 SLC Azimuth Pixel Spacing (m) = 0.6

Global Average Altitude (m) = 12495.755

Global Average Terrain Height (m) = 4.61314579

Average Pulse Repetition Interval (ms) = 2.24897112

Peg Latitude (deg) = 38.22006738

Peg Longitude (deg) = -121.928086

Peg Heading (deg) = 55.2680562

Ellipsoid Semi-major Axis (m) = 6378137.0

Ellipsoid Eccentricity Squared (=) = 0.00669438

Segment 1 Data Starting Azimuth (m) = -32011.8

Image Starting Slant Range (km) = 13.4489379 ;for SLC 1lxl data

Average Along Track Velocity (m/s) = 246.759825

Minimum Look Angle (deg) = 21.54218775

Maximum Look Angle (deg) = 65.29939711

Look Direction (&) = Left

Antenna Length (m) = 1.5

Polarization (&) = HH

Center Wavelength (cm) = 23.8403545

Bandwidth (MHz) = 80.0

Pulse Length (microsec) = 40.0

Start Time of Acquisition (&) = 3-Nov-2011 22:39:41 UTC
)

Stop Time of Acquisition (&) = 3-Nov-2011 22:44:22 UTC

4. Understanding the output products

After isceApp.py has finished running, take a look at the list of directories and files in the current
directory,

> 1s

catalog

demLat N38 N39 Lon W123 W1l2l.dem.wgs84.xml

dop.txt

incoming

isceApp.xml

isce.log

isceProc 20141017013039.xml

precooked

SanAnd 05510 01 BC.dop

SanAnd 05510 12128 000 121105 LO90HH 01 BC.ann

SanAnd 05510 12128 000 121105 LO90HH 01 BC sl 1xl.slc
SanAnd 05510 13089 001 130508 LO90HH 01 BC.ann

SanAnd 05510 13089 001 130508 LO90HH 01 BC sl 1xl.slc
SanAnd 05510 13089 001 130508 LO90HH 01 BC sl 1xl.slc.xml
SanAnd 05510 13165 004 131031 LOS90HH 01 BC.ann

SanAnd 05510 13165 004 131031 LO90HH 01 BC sl 1xl.slc
SanAnd 05510 13165 004 131031 LO90HH 01 BC sl 1xl.slc.xml
SanAnd 05510 14068 000 140529 LOS90HH 01 BC.ann

SanAnd 05510 14068 000 140529 LOSOHH 01 BC sl 1xl.slc
SanAnd 05510 14068 000 140529 LO90HH 01 BC sl 1xl.slc.xml
SanAnd 05510 14128 003 140829 LO90HH 01 BC.ann

SanAnd 05510 14128 003 140829 LO90HH 01 BC sl 1xl.slc
SanAnd 05510 14128 003 140829 LO90HH 01 BC sl 1xl.slc.xml
uavlO

uavl0_ uavll

uavl0 uavl?2

uavll

uavll uavl?2

uavl?2

uav9

uav9 uavl0

uav9 uavll

uav9 uavl2

Starting from the top of this listing we see a new directory named catalog, which contains
several text files with data indicating the state of several objects such as the orbit during the
processing flow. These may be useful in debugging if something doesn’t seem to work

properly.

The next new file is the dop . txt file, which is a text file containing the input doppler samples
from the UAVSAR input products and samples from a polynomial fit to these data done by

isceApp.py.

The next new file is isce. log, which is a text file with logging information from the run of
isceApp.py. Thenthereis thefile isceProc <date-time>.xml that contains detailed
information relevant to the information used in post-processing the data (provenance), including
the version of ISCE that was run, the input parameters, and much more. You can use list the
contents of the file using the commands ‘more’ or ‘less’ or ‘cat’.

Next you see a block of files that were originally in the directory with new s1c.xml files created
by isceApp.py interspersed in the listing. These files contain useful metadata for the sic files
that can be used in displaying those images with the command, mdx . py.

Then there are several directories named for the labels of the scenes (uav9 for example) and
the pairs indicated in the input file (eg., uav9 uav12), isceApp.xml. Usethe ‘1s’
command to view the contents of those directories.

The reference scene (defined in the xml file) directory,

> 1ls uav9

uav9 hh.raw uav9.lon.rdr uav9.los.rdr.xml uav9.z.rdr
uav9.zsch.rdr.xml

uav9.lat.rdr uav9.lon.rdr.xml uav9.simamp.rdr uav9.z.rdr.xml
uav9.lat.rdr.xml wuav9.los.rdr uav9.simamp.rdr.xml

uav9.zsch.rdr

The file with the extension . raw is not actually a raw unfocused file. It is a placeholder for a
file expected in the normal flow of i sceApp . py, which is actually just a symbolic link to the slc
file. The .rdr files contain the digital elevation model (DEM) lattitude, longitude, and heights
resampled in the radar coordinate system, a computed line of sight file to each output pixel in
los.rdr, and a simulated ampitude file from the DEM in simamp. rdr.

One of the pair directories,

> 1s uav9 wuavl2

uav9 uavl2Z hh.dem.crop

uav9 wuavlZ hh.resampImage.amp
uav9 uavl2 hh.dem.crop.xml

uav9 wuavl2 hh.resampImage.amp.xml

uav9 uavl2 hh.
uav9 uavl2 hh.
uav9 uavl2 hh.
uav9 uavlZ hh.
uav9 uavlZ hh.
uav9 uavlZ hh.
uav9 uavlZ hh.
uav9 uavl2 hh.
uav9 uavlZ hh.
uav9 uavl2 hh.
uav9 uavlZ hh.
uav9 uavl2 hh.
uav9 uavlZ hh.
uav9 uavl2 hh.
uav9 uavlZ hh.
uav9 uavl2 hh.
uav9 uavl2 hh.
uav9 uavl2 hh.
uav9 uavlZ hh.
uav9 uavl2 hh.
uav9 uavlZ hh.
uav9 uavlZ hh.

uav9 uavlZ hh

uav9 uavlZ hh.

uav9 uavlZ hh
>

filt topophase.conncomp
resampImage.int

filt topophase.conncomp.xml
resampImage.int.xml
filt topophase.flat
resampOnlyImage.amp
filt topophase.flat.
resampOnlyImage.amp.
filt topophase.flat.
resampOnlyImage.int
filt topophase.flat.
resampOnlyImage.int.

geo

geo.xml
xml
xml
filt topophase.unw
topophase.cor

filt topophase.unw.geo
topophase.cor.xml

filt topophase.unw.geo.xml
topophase.flat

filt topophase.unw.xml
topophase.flat.xml

geo.log

topophase.mph

.phsig.cor

topophase.mph.xml

.phsig.cor.xml

5. Visualizing the output products

You can look at a plot of the Doppler centroid as a function of range across the UAVSAR swath
and the polynomial fit to it used in ISCE by using the following command in your remote
desktop,

> cd /data/labll

> xmgrace -nxy dop.txt

The abcissa is the range bin and the ordinate is the Doppler value normalized by the PRF.

2 E T -

0.58 | | | | | :
0 2000 4000 6000 8000 10000

There is a black curve, which is the Doppler data from the UAVSAR project input file,
SanAnd 05510 01 BC.dop, which is hidden behind the red curve, which is the polynomial
fit. The green curve is the residuals from the fit.

For those who are familiar with satellite SAR data, notice that there is a strong variation of the
Doppler centroid across the UAVSAR swath caused by the large average yaw or squint of this

stack (-1.9 degrees). You can check the yaw of the stack provided in the annotation file with this
command:

uav1l0__uavl1_hh.filt_topophase.unw.geo

Application Display Set Zoom Select Print Tools Help

grep Yaw SanAnd 05510 13089 001 130508 LO90HH 01 BC.ann
Global Average Yaw (deg) = -1.90762926

You can use mdx .py to visualize any of the output images. For example, the filtered,
unwrapped, topophase corrected, geocoded interferogram for a pair before the earthquake,

> mdx.py uavlO uavll/uavl0 uavll hh.filt topophase.unw.geo -z -2

Note that some of the phase in this interferogram before the earthquake (waves running across
the swath) is likely due to aircraft motion that was not fully corrected, because this stack was
processed without the residual baseline correction.

Similarly for a pair spanning the earthquake,

> mdx.py uavll wuavl2/uavll uavl2 hh.filt topophase.unw.geo -z -2

X| uavll_wvavl2_hh.filt_topophase.unw.geo

Application Display Set Zoom Select Print Tools Help

The August 24, 2014 M6.0 South Napa Earthquake caused the strong fringes and the sharp
phase discontinuity near the west end of this UAVSAR interferogram where the fault ruptured
the surface. The default phase unwrapping method was not able to estimate the large offset
across the surface rupture, which is about 20 cm or nearly two fringes.

6. Notes about component configurability

Lab 7 illustrated a few of the component configurability options for controlling the processing of
COSMO-SkyMed data. In the current lab we did not tell you earlier but we have used a feature
of component configurability to provide additional input information to the processsing job. We
have set certain global preferences for processing the UAVSAR data with i sceApp.py so that
the input i scelpp.xml file we showed you in Section 3 was as simple and as specific to the
current data as possible. ISCE uses an environment variable $ISCEDB to locate these global
preferences. If you type the following commands you will see the name and contents of the
directory that ISCE looks in for these global preferences,

> echo S$SISCEDB
/home/ubuntu/.iscedb

>1s S$ISCEDB
insar.xml isce.xml

When you run an application the ISCE framework looks in this directory to see if any file is
named appropriately for configuring an ISCE component or applications. The iscelApp.py
application can be configured with a file named either isce.xml or isceApp.xml (or both
with the one named isceApp.xml having higher priority if there are conflicting information for
any properties contatined in the two files). When configuring isceApp.py the global preferences
can be overridden by settings in the input files in the processing directory or on the cammand
line.

Let’s look at the contents of the global preferences file for i sceApp.py,

> cat ~/.iscedb/isce.xml
<?xml version="1.0" encoding="UTF-8"?>

<!-- NOTE: tag/attribute names must be in lower case -->
<isceApp>
<component name="isce">
<component name="stack">
<component name="Rasterl">
<property name="ncol">1500</property>
<property name="nlin">4000</property>
<property name="datatype">float</property>
</component>
</component>
<property name="doppler method">usedefault</property>
<!-- Processors to run: True/False -->

<property
<property
<property

name="do
name="do
name="do

preprocess">True</property>
verifyDEM">True</property>
pulsetiming">True</property>

<property name="do estimateheights">True</property>
<property name="do mocomppath">True</property>

<property name="do orbit2sch">True</property>

<property name="do updatepreprocinfo">True</property>
<property name="do formslc">True</property>

<property name="do multilookslc">True</property>

<property name="do filterslc">False</property>

<property name="do filter interferogram">True</property>
<property name="do polarimetric correction">False</property>

<property name="do calculate FR">False</property>
<property name="do FR to TEC">False</property>
<property name="do TEC to phase">False</property>

<property
<property

name="do

name="do

offsetprf">False</property>-->
outliersl">False</property>-->

<property name="do prepareresamps">True</property>-->
<property name="do resamp">False</property>-->
<property name="do resamp image">False</property>-->
<property name="do crossmul">True</property>
<property name="do mocomp baseline">True</property>
<property name="do set topointl">True</property>
<property name="do topo">True</property>

<property name="do shadecpx2rg">True</property>
<property name="do rgoffset">False</property>
<property name="do rg outliers2">True</property>
<property name="do resamp only">True</property>
<property name="do set topoint2">True</property>

<property
<property

name="do

name="do

correct">True</property>
coherence">True</property>

<property name="do unwrap">False</property>
<property name="do geocode">True</property>
</component>
</iscelhpp>

Most of the contents of this file tell isceApp.py whether to do a particular step in its flow. The
False settings in this file are not really optional for processing UAVSAR stack data. The
isceApp.py application is general enough to work with many different types of sensors, so it is
necessary that it knows which steps to do for this particular sensor. The UAVSAR stack
processing is relatively new and in future updates to ISCE would automatically set these options
as the defaults when processing data from this sensor.

192 CHAPTER 12. POST-PROCESSING UAVSAR STACKS WITH ISCEAPP.PY

CHAPTER 13

GIAnT with UAVSAR Stacks

193

1. Intro - Preparing the ISCE stack for analysis

Note: Execute all the commands in this lab session on a terminal in the Guacamole interface.

GIANT is designed to work with outputs from multiple SAR/INSAR processors -e.g, ISCE,
ROI_PAC etc. The very first stage of processing with GIAnT transforms INnSAR products from
their native formats (e.g, ISCE’s binary files, GMTSAR’s grd files etc) to an internally consistent
Hierarchical Data Format 5 (HDF5) format.

In this tutorial, we will describe the steps involved in transforming all the input data (described in
the previous tutorial) into a HDF5 format needed by GIAnT. Again, we start with our test dataset

located in the directory “synthetic”:

> cd /home/ubuntu/data/giant/napa/GIAnT

> 1s
example.rsc map.json prepsbasxml.py
ifg.list prepdataxml.py userfn.py

From amongst the various python scripts in the directory - “userfn.py” and “prepdataxml.py” are
needed for preparing our data stack for analysis. The other python scripts are related to the
actual time-series analysis and will be discussed in Lab 12.2.

2. userfn.py - Translating pair information to actual files on disk

As described in the previous tutorial, “ifg.list” is a four column text file that describes our
interferogram network in a simple fashion.

> less ifg.list

20090218 20091117 0.0 UAVSAR
20090218 20100511 0.0 UAVSAR
20090218 20101028 0.0 UAVSAR
20091117 20100511 0.0 UAVSAR
20091117 20101028 0.0 UAVSAR

We also mentioned that we stored our unwrapped phase and coherence files in individual
sub-directories in a directory named “insar”. But we never provided the exact mapping between
each line of “ifg.list” and the corresponding files in “insar”. This is accomplished through
userfn.py .

>less userfn.py

def makefnames (datesl, dates?2, sensor):
dirname = '../insar'
keyl = datelkey(datesl)
key2 = dateZkey(dates?2)

pre = keyl+' '+4key2+' hh.'

root = os.path.join(dirname, keyl+' '+key2)

iname = os.path.join(root, pre+'filt topophase.unw')
cname = os.path.join(root, pre+'phsig.cor')

return iname, cname

“‘userfn.py” should define a function named “makefnames” that takes the the master date, slave
date and sensor name as inputs and returns two strings that represent the path to the
unwrapped phase file and the coherence file. “userfn.py” should be located in your working
directory.

This particular mechanism was devised to allow users to store INSAR outputs using their
preferred directory and file name structure. Note that “userfn.py” should be considered as an
user input, and each stack should be accompanied by its own “userfn.py”.

3. userfn.py and map.json

GIANT only insists on the existence a function named “makefnames” within the script
“userfn.py”. This function can in turn invoke other functions from other python libraries or look up
databases to construct filenames. In this case, it invokes the “date2key” function which has also
been defined in the same script.

> less userfn.py

def dateZkey(indate):
fid = open('map.json', 'r')
keymap = json.load(fid)
fid.close ()

instr = str (indate)
for key,value in keymap.items () :
if instr in value:

return key

raise Exception ('Date not found')

return

This is a simple python function that loads “map.json” and accepts a datestring in yyyymmdd
format to return the corresponding user-defined ISCE key.

4. “prepdataxml.py” - setting up data properties.

“prepdataxml.py” is responsible for generating the input file “data.xml” which describes the
characteristics of the dataset like dimensions, looks, formats etc.

> cd /home/ubuntu/data/giant/napa/GIAnT
> less prepdataxml.py
#!/usr/bin/env python

import tsinsar as ts
import argparse
import numpy as np

if name == ' main ':

######Prepare the data.xml

g = ts.TSXML('data')

g.prepare data xml ('example.rsc',
x1im=[0,1650], ylim=[0, 4165],
rxlim = [745,755], rylim=[3595,3605],
latfile=""', lonfile='"'"', hgtfile='",
inc = 21., cohth=0.4, chgendian='False',
unwfmt='RMG', corfmt='FLT')

g.writexml ('data.xml')

We set up some basic parameters for processing our stack using “prepdataxml.py”. The
complete list of all configurable parameters can be found in the GIAnT user manual. We
describe the parameters that we have set up using prepdataxml.py below:

example.rsc ROI_PAC style resource file with minimum common
metadata.
xlim X limits for cropping the image (Python convention). We use

the full image here.

ylim Y limits for cropping the image (Python convention). We use
the full image here.

rxlim X limits of reference region. Pixel 30-49 in range. (zero
index)

rylim Y limits of referenec region. Line 50-69 in azimuth. (zero

index)

latfile, lonfile, hgtfile

Files for lat, lon, height in radar coordinates. This
information is needed for atmospheric corrections,
which are currently not used. These are described in
the tutorial on advanced topics.

inc Incidence angle (constant or file). Again only use for
atmospheric corrections and GPS comparison. Not
used in this tutorial.

cohth Coherence threshold. All phase measurements with
coherence less than this value are considered
invalid.

chgendian To the input files are in a different format than the native
machine format.

unwfmt FLT/RMG to indicate that the input is one or two channel
file.

corfmt FLT/RMG to indicate that the input is one or two channel

file.

The default data type for all files is float32. See GIAnT user manual for complete list of options

and default values.

We will then generate our “data.xml” script as follows:

> python prepdataxml.py

To view the generated “data.xml” file,

> less data.xml

<data>
<proc>

<value>RPAC</value>
<type>STR</type>

<help>Processor used for generating the interferograms.</help>

</proc>
<master>
<width>

<value>1650</value>
<type>INT</type>

<help>WIDTH of the IFGs to be read in.</help>

</width>
<file length>

<value>4165</value>

<type>INT</type>

<help>FILE LENGTH of the IFGS to be read in.</help>
</file length>
<wavelength>

<value>0.238403545</value>

<type>FLOAT</type>

<help>WAVELENGTH of the Stack. If combining sensors,ensure that

they are all converted to same units.</help>

</wavelength>

Note that the generated XML file can be modified in a text editor, and we include a help string to
describe each of the parameters in the file.

We are now ready to gather data into a HDF5 file readable by GIANT.

4. PreplgramStack.py - preparing the stack

From the GIANnT working directory, execute PreplgramStack.py.

(NOTE: The PreplgramStack.py command and many of the rest in this lab need to be run from
the X11 windows in the Remote Desktop function of EarthKit.)

> cd /home/ubuntu/data/giant/napa/GIAnT

> PrepIgramStack.py

<module> - INFO - Number of interferograms = 30

<module> - INFO - Number of unique SAR scenes = 12

<module> - INFO - Number of connected components in network: 1
<module> - INFO - No common mask defined

<module> - INFO - Output h5file: Stack/RAW-STACK.h5

<module> - INFO - PNG preview dir: Figs/Igrams

<module> - INFO - Reading in IFGs

[========================= 59% =>] 134s / 93s

As indicated by the screen output, the program generates a file named “Stack/RAW-STACK.h5”
in the Stack directory and another directory called “Figs/Igrams”.

> 1s
data.xml Figs prepdataxml.py Stack userfn.pyc

example.xml 1ifg.list ©prepsbasxml.py userfn.py

> 1s Stack
RAW-STACK.hb5

> 1ls Figs
Igrams

> 1ls Figs/Igrams

HDF5 outputs of all GIANT programs are stored in the “Stack” directory and associated PNG
previews are generated in a directory named “Figs”.

5. PNG previews - What does our data look like?

The directory Figs/Igrams contains PNG previews of all unwrapped interferograms listed in
ifg.list . The PNG files are numbered in sequence. The PNG preview corresponding to the 80th
interferogram in our test data set.

To preview the PNG files, run the following command: (NOTE: you will need to run this image
preview command from the Remote Desktop as it is graphical in nature)

> cd Figs/Igrams

> eog *.png

Notice that a coherence threshold has been applied to the interferograms depending on the
user inputs in data.xml. The unwrapped phase has been converted to mm at this stage.

Unw phase Mask
0 . B - 1.0
200
0.9
150 0.8
100 0.7
1388+ E
0.6
1 50
0.5
0
0.4
2777F 4§ >0
0.3
-100
0.2
—150 01
4165 —200 0.0

1 1
0 550 1100 1650 0 550 1100 1650

6. Listing contents of RAW-STACK.h5

In this section, we will try to understand the structure of the HDF5 file Stack/RAW-STACK.h5
created by “PreplgramStack.py”. We can summarize the contents of this file using h51s

> cd /home/ubuntu/data/giant/napa/GIAnT
> h51s Stack/RAW-STACK.hb5

Jmat Dataset {30, 12}

bperp Dataset {30}

cmask Dataset {4165, 1650}
dates Dataset {12}

igram Dataset {30, 4165, 1650}
tims Dataset {12}

usat Dataset {12}

This lists the various arrays stored in the HDF5 file and their corresponding sizes.

HDF5 datasets are compatible with “gdal” and you can use gdalinfo to display help information
about each dataset.

> gdalinfo Stack/RAW-STACK.h5
Driver: HDF5/Hierarchical Data Format Release 5

Files: RAW-STACK.h5
Size is 512, 512
Coordinate System is '
Metadata:
bperp help=Array of baseline values.
cmask help=Common mask for pixels.
dates help=0Ordinal values of SAR acquisition dates.
help=All the raw data read from individual interferograms into a
single location for fast access.
igram help=Unwrapped IFGs read straight from files.
Jmat help=Connectivity matrix [-1,1,0]
tims help= Array of SAR acquisition times.
Subdatasets:
SUBDATASETﬁliNAME=HDF5:"RAW—STACK.h5"://Jmat

SUBDATASET 1 DESC=[30x12] //Jmat (64-bit floating-point)
SUBDATASET 2 NAME=HDF5:"RAW-STACK.h5"://cmask
SUBDATASET 2 DESC=[4165x1650] //cmask (64-bit floating-point)
SUBDATASET 3 NAME=HDF5:"RAW-STACK.h5"://igram
SUBDATASET 3 DESC=[30x4165x1650] //igram (32-bit floating-point)

Corner Coordinates:

Upper Left (0.0, 0.0)
Lower Left (0.0, 512.0)
Upper Right (512.0, 0.0)
Lower Right (512.0, 512.0)
Center (256.0, 256.0)

Every HDF5 dataset created by GIANnT includes a self-explanatory “help” attribute which is listed
in the “Metadata” section of the output from the gdalinfo command.

RAW-STACK.h5 has all the data we need to proceed to the next stage of time-series
processing, stored in a convenient and easily accessible format.

1. Quick recap

So far, we have gathered all the required network, unwrapped phase and coherence information

into a HDF5 file using “PreplgramStack.py” in the previous tutorial.

> cd /home/ubuntu/data/giant/napa/GIAnT

> hb51s Stack/RAW-STACK.h5
Jmat

bperp

cmask

dates

igram

tims

usat

Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset

{30,
{30}
{4165,
{12}
{30,
{12}
{12}

12}

1650}

4165, 1650}

In this tutorial, we will apply optional corrections to the ingested stack and estimate the
deformation time-series using the SBAS technique. We will also teach users to interactively
visualize some of the time-series results.

2. Setting up the processing parameters

In the previous tutorial, we described how the dataset parameters are controlled using
“data.xml”. In this tutorial, we will learn to set up the processing parameters using a similar XML
file - “sbas.xml”. This processing file is specific for the SBAS set of time-series inversions (See
figure below).

GIANT overview

PreplgramStack.py

ProcessStack.py

GPS data

Unwrapped
IFGs
Weather
models

MInTS chain
SBAS chain
DatatoWavelet.py

SN\t oy InvertWaveletCoeffs.py

(or)
InvertWaveletCoeffs_fol
ds.py

(or)
NSBASInvert.py
(or)
Timefninvert.py

WavelettoData.py

In the example dataset directory, you will find a script named “prepsbasxml.py” .

> cd /home/ubuntu/data/giant/napa/GIAnT
> less prepsbasxml.py
#!/usr/bin/env python

import tsinsar as ts
import argparse
import numpy as np

if name == ' main_ ':
g = ts.TSXML ('params')
g. prepare sbas xml(nvalid = 20, netramp=True, atmos='",

demerr = False, filt=0.25)

g.writexml ('sbas.xml')

The complete list of all configurable parameters in “sbas.xml” can be found in the GIAnT user
manual. We describe the parameters that we have set up using prepsbasxml.py below:

nvalid

Used for NSBAS inversion. Determines the minimum
number of interferograms that a pixel should be
coherent to be considered for inversion.

netramp

Boolean parameter controlling the deramping of
interferograms. In this case, the applied ramp
corrections are consistent over the entire network.

atmos

ProcessStack.py can download weather model data and
use that for stratified trophospheric phase delay
correction. This is beyond the scope of this tutorial.
We use a empty string to indicate that no weather
model corrections are to be applied.

demerr

Boolean parameter indicating if a DEM error term needs to
be estimated. The baseline information from ifg.list
is used for DEM error estimation.

filt

Width of the Gaussian filter to applied to the raw time-series
to obtain the smoothed estimates. The value of this
parameter is in years.

See GIANT user manual for complete list of options and default values.

> cd /home/ubuntu/data/giant/napa/GIAnT

> python prepsbasxml.py

To view the generated “sbas.xml’” file,

> less sbas.xml
<params>
<proc>
<nvalid>
<value>20</value>
<type>INT</type>

<help>Minimum number of coherent IFGs for a single pixel. If

zero, pixel should be coherent in all IFGs.</help>

</nvalid>
<uwcheck>

<value>False</value>

<type>BOOL<L/type>
</uwcheck>
<netramp>
<value>True</value>
<type>BOOL<L/type>
<help>Network deramp. Remove ramps from IFGs in a network
sense.</help>
</netramp>
<gpsramp>
<value>False</value>
<type>BOOL<L/type>
<help>GPS deramping. Use GPS network information to correct
ramps.</help>
</gpsramp>
<stnlist>
<value></value>
<type>STR</type>
<help>Station list for position of GPS stations.</help>
</stnlist>

</params>

Remember that the generated XML file can be modified in a text editor, and we again include a
help string to describe each of the parameters in the file.

We are now ready to process our stack from the HDF5 file.

3. ProcessStack.py - Applying corrections

The first stage of processing, in which the data supplied by the users is modified, is
accomplished using “ProcessStack.py”. The aim of this step is to
1. Correct for stratified troposphere artifacts, either
a. Empirically by looking at relationship between INSAR phase and DEM
b. Using weather models through the PyAPS package
2. Estimate ramps introduced due to orbital errors, either
a. Either empirically by fitting a predefined orbit error function to data
b. Using dense GPS observations

All the corrections are applied consistently across the interferogram network.

For this tutorial, we only choose to empirically deramping of interferograms. Details regarding
other options and the associated fields in “sbas.xml” can be found in the GIAnT user manual.

Run “ProcessStack.py”

(NOTE: The ProcessStack.py command needs to be run from the X11 windows in the Remote
Desktop function of EarthKit.)

> pwd
/home/ubuntu/data/giant/napa/GIAnT

> ProcessStack.py

logger - INFO - GIANT Toolbox - v 1.0

logger - INFO - -———==———————————————

<module> - INFO - Input h5file: Stack/RAW-STACK.h5
<module> - INFO - Deleting previous Stack/PROC-STACK.hb5
<module> - INFO - Output hb5file: Stack/PROC-STACK.h5
deramp - INFO - PROGRESS: Estimating individual ramps.

[====================== 98% ===================>] 17s / Os
deramp - INFO - PROGRESS: Network deramp of IFGs.
[====================== 98% ===================>] 27s / Os
<module> - INFO - PNG preview of Deramped images: Figs/Ramp

[======> 11%] 42s / 342s

Outputs of “ProcessStack.py” include - a processed stack file “Stack/PROC-STACK.h5” and a
directory of PNG previews of deramped interferograms “Figs/Ramp”.

> 1ls Stack
PROC-STACK.h5 RAW-STACK.hb5

To preview the contents of the new stack file
>h51s Stack/PROC-STACK.h5

Jmat Dataset {30, 12}

bperp Dataset {30}

cmask Dataset {4165, 1650}
dates Dataset {12}

figram Dataset {30, 4165, 1650}
ramp Dataset {30, 3}

tims Dataset {12}

To view the contents of the directory with the PNG previews.

> 1ls Figs/Ramp
I001.png I006.png I01l.png I0l16.png I021.png I026.png
I002.png I007.png I012.png I017.png I022.png I027.png

ooooooo

To see the effect of deramping on the 7th interferogram in the Stack: (NOTE: you need to run
this from Remote Desktop for the graphical viewer)

> eog Figs/Ramp/I007.png

o Original Deramped
‘ T - :

150 150
100 100
450 50

13881 1
0 0
-50 -50

27771 1 =100 -100
-150 -150
-200 -200

‘ . . .
41820 550 1100 1650 0 550 1100 1650

Our stack is now deramped and ready for the final time-series inversion.

4. SBASInvert.py - Final inversion

In this tutorial, we demonstrate the simplest time-series inversion algorithm implemented in
GIANT - the SBAS algorithm. GIAnT also implements two other algorithms in the SBAS chain -
NSBASInvert.py and Timefninvert.py. The detailed discussion on the differences between these
approaches can be found in the GIANT user manual.

The SBAS algorithm estimates the differential displacement between one SAR acquisition and
the next using a simple least squares approach. Our implementation of the algorithm estimates
the time-series only for the pixels that are considered coherent in all the interferograms in the
entire stack.

> SBASInvert.py
logger - INFO - GIANT Toolbox - v 1.0
logger - INFO - -—-——==————==——————-———-

<module> - INFO - Number of interferograms = 30
<module> - INFO - Number of unique SAR scenes = 12
<module> - INFO - Number of connected components in network: 1

Timefn - INFO - Adding 12 linear pieces (SBAS)

<module> - INFO - Output h5file: Stack/LS-PARAMS.h5
[====================== (0% ===================> | 800s / Os
“SBASInvert.py” stores the inversion results in “Stack/LS-PARAMS.h5”.

> hb51ls Stack/LS-PARAMS.hb5

bperp Dataset {46}

cmask Dataset {1920, 2118}
dates Dataset {17}

gamma Dataset {SCALAR}

ifgcnt Dataset {1920, 2118}
mName Dataset {3}

masterind Dataset {SCALAR}

parms Dataset {1920, 2118, 3}
rawts Dataset {17, 1920, 2118}
recons Dataset {17, 1920, 2118}
regF Dataset {3}

tims Dataset {17}

Note that the HDF5 file contains the raw time-series estimates (rawts) as well as the filtered
time-series estimates (recons). In the next couple of sections, we will describe the visualization
tools that are included with GIANT.

5. plotts.py - Interactive visualization

GIANT includes a script called “plotts.py” for interactive visualization of the generated
time-series products. “plotts.py” requires a graphical desktop to run. It may require you to adjust
matplotlib settings to work with an X-windows environment.

Note: (Execute Only if you have trouble using the visualization scripts)
To set matplotlib to run successfully in X-windows, edit or create this file:

> nano ~/.matplotlib/matplotlibrc

and set this value:

backend : TkAgg

(or)
Execute this on the command line
> echo “backend : TkAgg” >> ~/.matplotlib/matplotlibrc

Now we are ready to run “plotts.py”. Running the script the “-h” option list all the input
parameters that can be controlled from command line.

> plotts.py -h
logger - INFO - GIANT Toolbox - v 1.0
logger - INFO - -—-——————=—————————————
usage: plotts.py [-h] [-e] [-f FNAME] [-1i TIND] [-m MULT] [-y YLIM
YLIM]
[-ms MSIZE] [-raw] [-model] [-mask MASK MASK] [-zf]

Interactive SBAS time-series viewer

optional arguments:

-h, —--help show this help message and exit

-e Display error bars if available. Default: False

-f FNAME Filename to use. Default: Stack/LS-PARAMS.h5

-i TIND Slice to display. Default: Middle index

-m MULT Scaling factor. Default: 0.1 for mm to cm

-y YLIM YLIM Y Limits for plotting. Default: [-25,25]

-ms MSIZE Marker size. Reduce if error bars are too small.
Default: 5

-raw Plot Un-Filtered Time Series as well, if available

-model Plot the individual model components as well. For

NSBAS, Timefn and MInTS.

-mask MASK MASK To mask out values. Need to provide 2 inputs -
Mask file in
float and xml file with dimensions. Default: None
-zf Changes time-origin to first acquisition for
showing time-

series.
To visualize the output from “SBASInvert.py”,
> plotts.py -f Stack/LS-PARAMS.h5 -y -5 30 -raw
This will open two plot windows - an interactive time-slice viewer and a pixel time-series viewer
as shown below. The colorbar for the slice viewer ranges from -5 to 30 cm, and the raw

time-series (red dots) is also shown along with the filtered time-series (blue); as requested using
the command line flags -y and -raw.

Time-slice viewer Pixel time-series viewer
Ao e o
Time = Mar-03-2011 Ling = 1120, Pix = 1730

101135 201130

ﬁm7 FiLes Miie Wi Wi
Teme in years

ROO+ W / S kool Lk i |

Interactive time bar in years CLJlrrent puxel Ir:-cahor;t
(click to change plot) Time-series of eurrent pixel (Click on image on left to

(red-raw, blue-filtered) change)

Users can now view different time-slices by clicking on the time-bar and can view the
time-series for different pixels by directly clicking on the pixel of interest in the image.

Some observations:
1. Our analysis clearly captures the offset associated with the Aug 24, 2014 Napa EQ.
2. GIANnT implements a simple Gaussian weighted moving average filter. Hence, the
discrepancy between the raw displacement observations (red pixels) and the filtered
observations (blue pixels).

3. Users can implement their own custom filtering with the raw time-series included in the
HDF5 file.

Besides plotts.py, GIANT can also export results as a movie through the “make_movie.py” script
and as a Google Earth ready KML using “make_kml.py” scripts. For details and usage, refer to
the GIANT user manual. GIANT also includes tools to export these datasets into GMT’s netcdf
format and a GDAL compatible VRT. Users are strongly encouraged to use GDAL python
bindings to export arrays from GIAnT’s HDF5 files to GIS-ready formats.

5. Timefninvert.py - GPS-like time series modeling

In this section, we demonstrate the usage of “Timefninvert.py” to perform a GPS-like functional
form driven analysis of INSAR data . In this case, we define a functional form for the expected
spatio-temporal evolution of the surface deformation over our area of interest based on apriori
knowledge or observed deformation from a spatially sparse GPS network over the area of
interest. For our example, we know than an earthquake occurred on Aug 24, 2014 in Napa and
that our stack spans the event. We communicate a simple functional form for deformation -
constant velocity + step function using a functionan named “timedict” in the “userfn.py” script as
follows:

> less userfn.py

def timedict () :
rep = [['POLY',[1],[0.0]],
["STEP', [5.5113]11]]

return rep

Note that the time tags in the functional form is defined w.r.t to the first SAR acquisition in the
stack (20090218) in fractional years.

>TimefnInvert.py

Timefn - INFO - Adding order 0 at T = 0.000000

Timefn - INFO - Adding order 1 at T 0.000000

Timefn - INFO - Adding Step at T = 5.511300

<module> - INFO - OQutput hb5file: Stack/TS-PARAMS.h5
[====================== 00§ ===================>] 800s / Os

To visualize the results:
> plotts.py -f Stack/TS-PARAMS.h5 -y -15 15 -model

The model parameters are stored in a 3D matrix called “parms” in the output file
“TS-PARAMS.h5”, and can be directly used for modeling. This should open three display
windows instead of the usual two. The map of the model parameters is displayed in the third
window (not linked to Pixel time-series viewer).

Note:
GIANT user manual describes the convention for setting up complicated functional forms in
detail.

	License
	Introduction
	Getting Started With ISCE
	Using MDX
	Processing Interferometric Data Sets Using insarApp.py
	Processing ERS Data
	Processing Envisat Data
	Processing COSMO-SkyMed Raw Data
	Processing From SLC: COSMO-SkyMed, TerraSAR-X, RadarSAT-2, and others
	ISCE Stack Processing for GIAnT
	Working with GIAnT
	Hands On Lab On Polarimetric UAVSAR Data Processing for Land-cover Land-use Change Applications
	Post-Processing UAVSAR Stacks With isceApp.py
	GIAnT with UAVSAR Stacks

